• Title/Summary/Keyword: 냉방기 Control

Search Result 66, Processing Time 0.023 seconds

Cultural characteristics of Auricularia polytricha 'Geoni' in a high temperature growth room (고온기 재배시설에 따른 털목이 '건이'의 생육 특성)

  • Kim, Kil-Ja;Kim, Da-Mi;An, Ho-Sub;Choi, Jin Kyung;Kwon, Oh-Do
    • Journal of Mushroom
    • /
    • v.17 no.1
    • /
    • pp.7-11
    • /
    • 2019
  • We assessed the growth characteristics of Auricularia polytricha 'Geoni' cultivated in a simple greenhouse constructed of polyethylene (PE) without air conditioning (high temperature) and in an air conditioned mushroomhouse. The successful cultivation of A. polytricha 'Geoni' at high temperatures can reduce energy and facility investment costs. The comparison of growth characteristics of the fungi grown under the different temperature conditions revealed that fruit bodies were larger in the higher temperature condition, but were brighter in the lower temperature condition. Additionally, fruit body physiology was found to be not affected by temperature. In the PE greenhouse, the fresh weight of fruit body was higher in mid-June and early July. Therefore, it was possible to effectively control the growth period of the mushrooms during a high-temperature period. The findings indicate the potential to cultivate A. polytricha 'Geoni' in a simple PE greenhouse that is not cooled in summer, thus reducing energy costs.

Study and Survey of Operating Efficiency with Cool Storage System (빙축열냉방시스템의 운전효율에 관한 조사연구)

  • 손학식;심창호;김강현;김재철
    • Journal of Energy Engineering
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • The purpose of this study is to maintain high efficiency and reasonable use of cool thermal storage systems operated in the domestic building sector. As the result of efficiency test from the five types of operated cool storage systems on the condition that COP ranges are 2.6 to 3.4 during the day time and 2.1 to 3.0 during the night time and it decreased by more than 30% of rated COP given 3.8 to 3.0. The Analysis of cool storage rate shows that only 3 (21.4%) systems out of 15 buildings hold to over 40% capacity for its total capacity. To prevent the decrease in operating efficiency, it should correct the malfunction of 3-way valve and expansion valve and the mistake of control values for schedule program and increase cooling tower capacity. In order to improve piping line, it needs bypass brine line off refrigerator, separation of chilled water line with Ice Slurry system at day and night time and speed control of chilled and warm water pumps. This study does require the more studies on improving difficulty of increasing cooling load with Ice on Coil system, waterproofing with Ice Ball system, COP drop during the night time with Ice Lens, low operating temperature during the day time with Ice Slurry and increasing of Power loss due to hot gas de-icing with Ice Harvest in the future.

Effect of Design Value Selection on Heating and Cooling Load Calculation in Greenhouses (설계 변수 선택이 온실의 냉난방부하 산정에 미치는 영향)

  • Nam, Sang-Woon;Shin, Hyun-Ho
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.277-284
    • /
    • 2018
  • For the main variables to be selected by the designer for the heating and cooling load calculation in greenhouses, in order to evaluate the effect of these design values on the heating and cooling load, the simulations were carried out by varying the respective design values. Based on these results, we proposed the design values which should pay special attention to selection. The design values which have the greatest effect on the heating load were the overall heat transfer coefficient of the covering material and the design outdoor temperature was next. The effect of the design values according to the number of spans showed little difference. In the case of the single-span greenhouse, the effect of the design values related to the underground heat transfer can not be ignored. However, in the case of the multi-span greenhouse, the effect of the design values related to the underground heat transfer and the infiltration rate were insignificant. The design values which have the greatest effect on the cooling load were the solar radiation into the greenhouse and the evapotranspiration coefficient, followed by the indoor and outdoor temperature difference and the ventilation rate. The effect of the design values showed a great difference between the single-span greenhouse and the multi-span greenhouse, but there was almost no difference according to the number of spans. The effect of the overall heat transfer coefficient of the covering material was negligible in both the single-span greenhouse and the multi-span greenhouse. However, the effect of the indoor and outdoor temperature difference and the ventilation rate on the cooling load was not negligible. Especially, it is considered that the effect is larger in multi-span greenhouse.

The Improvement of the Performance of Solar Cooling and Heating Systems (II) - The Characteristics of an Absorption Refrigeration Powered by Solar Systems - (태양열에 의한 냉방 및 난방시스템의 성능향상(II) - 태양열을 이용한 흡수식 냉동기의 성능 -)

  • Park, M.S.;Kim, M.G.;Kim, H.K.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.1
    • /
    • pp.46-54
    • /
    • 1989
  • The purpose of this study is to obtain the dynamic characteristics of an absorption refrigerator powered by solar energy by experiments. Since the absorption refrigerator power by solar energy should have the characteristics which is suitable for the intermittence and rarity of solar energy, not only the characteristics of the steady state operations but also the partial load and the transient operations should be considered. The minimum available temperature of the storage tank should be known, and the absorption refrigerator can be suitably selected for air-conditioning systems. In this study, the experimental data of the transient state for on-off and warming-up operations has been obtained. Also the experiments are performed which test the minimum available temperature of the storage tank. The results show that it takes 1 hour to get to the steady state of the absorption refrigerator, and the minimum available temperature of the storage tank is about $68^{\circ}C$, and show that in the partial load operations the performance of the absorption refrigerator is improved by applying the modified control method to on-off operations.

  • PDF

Study on the Energy Efficiency Improvement of Hybrid Dehumidification Air Conditioning System Compared with Refrigeration System (냉각식 시스템과 비교한 복합식 제습냉방시스템의 냉각 열량증가에 관한 실험적 연구)

  • Lee Su-Dong;Park Moon-Soo;Chung Jin-Eun;Choi Young-Seok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.952-959
    • /
    • 2004
  • The hybrid liquid desiccant air conditioning system has been in use for many years, primarily in industrial process applications requiring dehumidification and humidity control. In this study, the hybrid dehumidifier has been designed to study the dehumidification characteristic of the aqueous triethylene glycol (TEG) solution. The experimental results show energy efficient characteristics of hybrid liquid desiccant air conditioning system compared with the refrigeration system in terms of energy use, the difference of pressure loss between hybrid liquid desiccant air conditioning system and refrigeration system. Data obtained are useful for design guidance and performance analysis of the hybrid air conditioning system.

Effects of Several Cooling Methods and Cool Water Hose Bed Culture on Growth and Microclimate in Summer Season Cultivation of Narrowhead Goldenray 'Ligularia stenocephaia' (곤달비 여름재배 시 냉각방법과 냉수호스베드재배가 생육 및 미기상에 미치는 영향)

  • Kim, Ki-Deog;Lee, Eung-Ho;Kim, Won-Bae;Lee, Jun-Gu;Yoo, Dong-Lim;Kwon, Young-Seok;Lee, Jong-Nam;Jang, Suk-Woo;Hong, Soon-Choon
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.116-122
    • /
    • 2011
  • This study was carried out to investigate the effects of several cooling methods such as water hose cooling, mist, fog and control on growth and microclimate, and to develop a simple nutriculture bed for production of fresh leaves of narrowhead goldenaray 'Ligularia stenocephala'. When the root-zone was cooled with 240 L/hr flow rate of $13^{\circ}C$ ground water using water hose, the temperature was lowered approximately by 2 to $3^{\circ}C$ than that of control. The growth of narrowhead goldenaray were favorable in the water hose cooling compared with the other cooling methods. Nutrient culture system having part cooling effect around plant canopy was developed. The system was composed of 15 cm diameter of water hose on side wall of beds, cooling hose, and expanded rice hull media as organic substrate. When cool water which the temperature changed in the range of 14 to $22^{\circ}C$ diurnally with 240 L/hr of flow rate through water hose, the air temperature around canopy and root-zone temperature were dropped by $0.5^{\circ}C$ and $3^{\circ}C$ compared with that of conventional styrofoam bed, respectively. These results showed that newly devised bed system using water hose was simple and economical for the production of high quality narrowhead goldenaray leaves. This system might be practically used both at summer and winter season for the cultivation of narrow head goldenaray by part cooling or heating around root-zone and plant canopy.

Optimum Management of Greenhouse Environment by the Shading Coat and Two-fluid Fogging System in Summer Season (차광제와 이류체 포그시스템을 이용한 고온기 시설내 환경관리)

  • Kim, Sung Eun;Lee, Jae Eun;Lee, Sang Don;Kim, Hak Sun;Chun, Hee;Jeong, Woo Ri;Lee, Moon Haeng;Kim, Young Shik
    • Journal of Bio-Environment Control
    • /
    • v.24 no.1
    • /
    • pp.34-38
    • /
    • 2015
  • This research was conducted to establish efficient methods to overcome high temperature and low humidity with light selective shading agent and two-fluid fogging system in greenhouses in hot season. There were four experimental treatments; not treated (Non), fogging by two-fluid fogging system (Fog), spraying onto the greenhouse surface with shading coating agent (Coat), and using fogging and coating together (F&C). The amount of solar radiation entered into the greenhouses was higher in Non, and then Fog, Coat, and F&C in descending order. Fog was more efficient to lower the air temperature and also raise relative humidity than Coat treatment. The crop temperature was about $6^{\circ}C$ higher in Control than the other treatments. F&C revealed as the most efficient method to control the environment inside the greenhouse, but fogging system seemed to be more economic. In stand-alone greenhouses spraying coating agent may be the appropriate choice because of their structural limitations, mainly eave height.

An Experimental Study on the Heat Storage Properties of Phase Change Material Using Paraffin Sheets in Building (파라핀을 이용한 건축용 시트형 잠열축열재의 축열특성에 관한 실험적 연구)

  • Ko, Jin-Soo;Kim, Byung-Yun;Park, Sung-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.5
    • /
    • pp.435-441
    • /
    • 2011
  • The life cycle assessment on greenhouse gas emission of reinforced concrete buildings shows that more than 70 percent of greenhouse gas that is discharged by a building is discharged in the building maintenance stage, including cooling and heating. To reduce the greenhouse gas emission, maintenance planning to minimize the energy consumption is necessary in the design stage. In this paper, two heat storage rooms are tested to save the air cooling energy of the buildings. The specimens are essentially identical, except that chamber A contained paraffin sheets as the finishing material, while the other, chamber B, served as a control. The test results show that chamber A with the paraffin sheets exhibited less temperature change than chamber B without the sheets when temperature was increased outside of the specimens. The heating energy was probably consumed in the phase change of the paraffin sheets, which can be useful for reducing energy consumption related to air cooling during the summer.

Changes in Greenhouse Temperature and Solar Radiation by Fogging and Shading During Hydroponics in Summer Season (여름철 수경재배 시 포그 분무와 차광에 의한 하우스 내부 온도 및 광 환경 변화)

  • Lim, Mi Young;Jeong, Ho Jeong;Roh, Mi Young;Choi, Gyeong Lee;Kim, So Hui;Choi, Su Hyun
    • Journal of Bio-Environment Control
    • /
    • v.30 no.3
    • /
    • pp.230-236
    • /
    • 2021
  • Changes in greenhouse temperature and solar radiation due to fogging and shading were monitored during hydroponics in high temperature in summer season. Experiment 1 consists of four treatments, namely, Control, Shading, Fogging, and Fogging + Shading based on sunny days August. For Experiment 2, two melon cultivars of 'Dalgona' and 'Sopoong gaza' were cultivated in summer of 2020 using Fogging + Shading with the best result for temperature reduction effect from Experiment 1. As a result of Experiment 1, the effect of Fogging + Shading on temperature reduction was apparent where the inside was about 4℃ (as the lowest temperature) lower than the outside. Fogging + Shading showed the inside was 2-4℃ lower than the outside, and Fogging or Shading treatments had little difference, compared to the Control where the internal temperature of greenhouse was 3-4℃ higher than the external. For solar radiation changes between greenhouse inside and outside, the internal change was in a similar pattern between Fogging and Control, and between Shading and Fogging + Shading, respectively. In case of the Fogging treatment (similar with the Control) only the effect of solar radiation reduction as influenced by plastic greenhouse covering materials was examined. The Fogging + Shading had a very similar change in solar radiation to the Shading. Based on these results, Experiment 2 was conducted in summer of 2020 and resulted in a temperature reduction effect of about 3.9℃ according as the inside of air-conditioned greenhouse was kept 32.4℃ when the maximum temperature of the outside reached 36.3℃ in August during the cultivation period. In addition, the quality of melon fruit was good (1.3-1.5 kg of fruit weight, 12.6-13.3 of soluble solids content. In the case of using Fogging + Shading cooling treatment, it can bring about the effect of reducing the temperature during the high temperature in summer, and normal growth of melon and fruit harvesting were possible.

An Experimental Study on Performance of Energy Recovery Ventilation System (폐열회수 환기시스템의 성능에 관한 실험적 연구)

  • Kim, Young-Soo;Choi, Kwan-Soo;Kim, Il-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.445-450
    • /
    • 2012
  • At the limited space, the air conditioning may have difficult to control temperature or humidity for home use. Nowdays, the people reponse to temperature or humidity sensitively. This becomes the Indoor Air Quality (IAQ) is an important factor for comfortably. Heat recovery ventilator (HRV) is used for the solution of inconsistency between IAQ and power-saving. Also, the thermoelectric element is applied to HRV and compared with temperature efficiency and verifying the capacity of the system. To improve the temperature efficiency a single motor and thermoelectric element with the conductive guide vane is experimented. The results shows that it can save 23 W by using the single motor. The developed system of 250 CMH capacities with the thermoelectric element reveals the temperature efficiency improvement of 4.01% in cooling period and 2.98% in heating period compared to the conventional system.