DOI QR코드

DOI QR Code

Changes in Greenhouse Temperature and Solar Radiation by Fogging and Shading During Hydroponics in Summer Season

여름철 수경재배 시 포그 분무와 차광에 의한 하우스 내부 온도 및 광 환경 변화

  • Lim, Mi Young (Protected Horticulture Research Institute, National Institute of Horticultural and Herbal Science) ;
  • Jeong, Ho Jeong (Protected Horticulture Research Institute, National Institute of Horticultural and Herbal Science) ;
  • Roh, Mi Young (Protected Horticulture Research Institute, National Institute of Horticultural and Herbal Science) ;
  • Choi, Gyeong Lee (Protected Horticulture Research Institute, National Institute of Horticultural and Herbal Science) ;
  • Kim, So Hui (Protected Horticulture Research Institute, National Institute of Horticultural and Herbal Science) ;
  • Choi, Su Hyun (Vegetable Research Division, National Institute of Horticultural and Herbal Science)
  • 임미영 (국립원예특작과학원 시설원예연구소) ;
  • 정호정 (국립원예특작과학원 시설원예연구소) ;
  • 노미영 (국립원예특작과학원 시설원예연구소) ;
  • 최경이 (국립원예특작과학원 시설원예연구소) ;
  • 김소희 (국립원예특작과학원 시설원예연구소) ;
  • 최수현 (국립원예특작과학원 채소과)
  • Received : 2021.04.14
  • Accepted : 2021.07.05
  • Published : 2021.07.31

Abstract

Changes in greenhouse temperature and solar radiation due to fogging and shading were monitored during hydroponics in high temperature in summer season. Experiment 1 consists of four treatments, namely, Control, Shading, Fogging, and Fogging + Shading based on sunny days August. For Experiment 2, two melon cultivars of 'Dalgona' and 'Sopoong gaza' were cultivated in summer of 2020 using Fogging + Shading with the best result for temperature reduction effect from Experiment 1. As a result of Experiment 1, the effect of Fogging + Shading on temperature reduction was apparent where the inside was about 4℃ (as the lowest temperature) lower than the outside. Fogging + Shading showed the inside was 2-4℃ lower than the outside, and Fogging or Shading treatments had little difference, compared to the Control where the internal temperature of greenhouse was 3-4℃ higher than the external. For solar radiation changes between greenhouse inside and outside, the internal change was in a similar pattern between Fogging and Control, and between Shading and Fogging + Shading, respectively. In case of the Fogging treatment (similar with the Control) only the effect of solar radiation reduction as influenced by plastic greenhouse covering materials was examined. The Fogging + Shading had a very similar change in solar radiation to the Shading. Based on these results, Experiment 2 was conducted in summer of 2020 and resulted in a temperature reduction effect of about 3.9℃ according as the inside of air-conditioned greenhouse was kept 32.4℃ when the maximum temperature of the outside reached 36.3℃ in August during the cultivation period. In addition, the quality of melon fruit was good (1.3-1.5 kg of fruit weight, 12.6-13.3 of soluble solids content. In the case of using Fogging + Shading cooling treatment, it can bring about the effect of reducing the temperature during the high temperature in summer, and normal growth of melon and fruit harvesting were possible.

여름철 수경재배 시 포그 분무와 차광 처리에 의한 하우스 내부의 온도 및 광 변화를 모니터링하였다. 시험 1은 2019년 8월 맑은 날을 기준으로 무처리, 차광, 포그, 포그 + 차광 등 각각 4처리 하였다. 시험 2는 시험 1에서 온도 저감 효과가 가장 좋았던 포그 + 차광 처리를 이용하여 멜론 '달고나', '소풍가자' 2품종에 대해 2020년 여름 기간에 실증 재배를 실시 하였다. 시험 1의 결과 포그 + 차광 혼합처리 시 온도 저감 효과가 뚜렷하여 하우스 내부 온도가 외부 온도보다 가장 낮은 경우 약4℃ 정도 낮게 나타났다. 하우스 내부와 외부의 온도 편차를 살펴보면 포그와 차광 혼합처리에서는 평균 2-4℃ 더 낮아졌고, 포그 또는 차광 단일 처리구는 하우스 내부 및 외부 간의 온도 편차가 거의 없었으며, 무처리는 하우스 내부 온도가 외부 온도보다 평균 3-4℃ 더 높은 것으로 조사되었다. 하우스 내외부 일사량 변화를 측정한 결과 무처리구와 포그 단일 처리의 하우스 내부 일사량 변화가 비슷하였고, 차광 단일 처리와 포그와 차광 혼합처리의 하우스 내부 일사량 변화가 서로 비슷하였다. 무처리와 비슷한 포그만 처리한 경우 일반적인 비닐 피복재에 의한 하우스 내부 일사량 저하의 영향만 관찰되었다. 특히 포그 + 차광 처리의 경우 차광 단일 처리와 매우 유사한 일사량의 변화가 관찰되었다. 이러한 결과를 바탕으로 2020년 여름에 실증 재배를 한 결과, 8월 외부 기온 최대 36.3℃일 때 냉방 처리 하우스 내부 기온은 32.4℃ 정도 유지되었으며, 약3.9℃ 정도 온도 저감 효과가 있었다. 생산된 멜론의 과중은 1.3-1.5kg 다소 작았으나, 가용성 고형물 함량은 12.6-13.3°Brix로 단맛은 양호한 편이었다. 포그와 차광 혼합 냉방처리를 이용 할 경우 여름철 고온기 온도 저감 효과를 가져 올 수 있고 멜론의 정상적인 생육과 과실 수확이 가능하였다.

Keywords

Acknowledgement

본 연구는 2019-2020년 농촌진흥청 국립원예특작과학원 시설원예연구소 연구개발사업(과제번호: PJ01324101)에 의해 수행되었음.

References

  1. Abdel-Ghany A.M., and T. Kozai 2006, Dynamic modeling of the environment in naturally ventilated, fog-cooled greenhouse. Renewable Energy 31:1521-1539. doi:10.1016/j.renene.2005.07.013
  2. Arbel A., O. Yekutieli, and M. Barak 1999, Performance of a fog system for cooling greenhouse. J Agric Engng Res 72:129-136. doi:10.1006/jaer.1998.0351
  3. Cheong D.C., J.J. Lee, C.H. Choi, Y.J. Song, H.J. Kim, and J.S. Jeong 2015, Growth and cut-flower productivity of spray rose as affected by shading method during high temperature period. Kor J Hort Sci Technol 33:227-232. (in Korean) doi:10.7235/hort.2015.14154
  4. Choi K.Y., J.Y. Ko, H.J. Yoo, E.Y. Choi, H.C. Rhee, and Y.B. Lee 2014, Effect of cooling timing in the root zone on substrate temperature and physiological response of sweet pepper in summer cultivation. Kor J Hort Sci Technol 32:53-59. (in Korean) doi:10.7235/hort.2014.13123
  5. Guerrero F.V., M. Kacira, E.F. Rodrguez, R. Linker, C. Kubota, G.A. Giacomelli, and A. Arbel 2012, Simulated performance of a greenhouse cooling control strategy with natural ventilation and fog cooling. Biosystems Engineering 111:217-228. doi:10.1016/j.biosystemseng.2011.11.015
  6. Kim D.E., J.K. Kwon, S.J. Hong, J.W. Lee, and Y.H. Woo 2020, The effect of greenhouse climate change by temporary shading at summer on photo respiration, leaf temperature and growth of cucumber. Protected Hort Plant Factory 29:306-312. (in Korean) doi:10.12791/KSBEC.2020.29.3.306
  7. Kim M.K., G.S. Kim, and S.W. Nam 2001, Efficient application of greenhouse cooling systems. Ministry for Food, Agriculture, Forestry and Fisheries. pp 28-118. (in Korean)
  8. Lee J.N., E.H. Lee, J.S. Im, W.B. Kim, and Y.R. Yeoung 2008, Fruit characteristics of high temperature period and economic analysis of summer paprika (Capsicum annuum L.) grown at different altitudes. Kor J Hort Sci Technol 26:230-233. (in Korean)
  9. Lee H.J., S.T. Park, S.K. Kim, C.S. Choi, and S.G. Lee 2017, The effects of high air temperature and waterlogging on the growth and physiological responses of hot pepper. Kor J Hort Sci Technol 35:69-78. (in Korean) doi:10.12972/kjhst.20170008
  10. Lee H.W., and Y.S. Kim 2011, Application of low pressure fogging system for commercial tomato greenhouse cooling. Journal of Bio-Environment Control 20:1-7. (in Korean)
  11. Lim M.Y., H.J. Jeong, S.H. Choi, G.L. Choi, and S.H. Kim 2020a, Effect of planting density by cultivars on the growth and yield of melons (Cucumis melo L.) in hydroponics using coir substrates. Kor J Hort Sci Technol 38:850-859. (in Korean) doi:10.7235/HORT.20200077
  12. Lim M.Y., S.H. Choi, H.J. Jeong, and G.L. Choi 2020b, Characteristics of domestic net type melon in hydroponic spring cultivars using coir substrates. Kor J Hort Sci Technol 38:78-86. doi:10.7235/HORT.20200008
  13. Mahmoud M.S. 2015, Experimental study to evaluate mist system performance. International Journal of Innovative Research in Advanced Engineering (IJIRAE) 9:41-48.
  14. Nam S.W., K.S. Kim, and G.A. Giacomelli 2005, Improvement of cooling efficiency in greenhouse fog system using the dehumidifier. Journal of Bio-Environment Control. 14:29-37. (in Korean)
  15. Park S.H., J.P. Moon, J.K. Kim and S.H. Kim 2020, Development of fog cooling control system and cooling effect in greenhouse. Protected Hort Plant Factory 29:265-276. (in Korean) doi:10.12791/KSBEC.2020.29.3.265
  16. Perdigones A., J.L. Garcia, A. Romero, A. Rodriguez, L. Luna, C. Raposo, and S. de la Plaza 2008, Cooling strategies for greenhouses in summer: Control of fogging by pulse width modulation. Biosystems Engineering 99:573-586. doi:10.1016/j.biosystemseng.2008.01.001
  17. Rhee H.C., G.L. Choi, K.H. Yeo, M.W. Cho, and I.W. Cho 2015, Effect of fog-cooling on the growth and yield of hydroponic paprika in grown summer season. Protected Hort Plant Factory 24:258-263. (in Korean) doi:10.12791/KSBEC.2015.24.3.258
  18. Sethi V.P., and S.K. Sharma 2007, Survey of cooling technologies for worldwide agricultural greenhouse applications. Solar Energy 81:1447-1459. doi:10.1016/j.solener.2007.03.004
  19. Walker D.A., M.N. Sivik, R.T. Prinsley, and J.K. Cheesbrough 1983, Effect of temperature on the rate of photorespiration in several plants. Plant Physiol 73:542-549. https://doi.org/10.1104/pp.73.3.542
  20. Woo Y.H., J.M. Lee and H.J. Kim 1996, Analysis of major environmental factors and growth response of spinach (Spinacia oleracea) as affected by fog system and shading in summer plasstic house. J Kor Soc Hort Sci 37:638-644. (in Korean)