• Title/Summary/Keyword: 냉각효율

Search Result 584, Processing Time 0.028 seconds

Film Cooling from Two Rows of Holes with Opposite Orientation Angles(II) -Blowing Ratio Effect- (반대방향의 방향각을 갖는 2열 분사구조의 막냉각 특성(II) -분사비의 영향-)

  • Ahn, Joon;Jung, In-Sung;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1131-1139
    • /
    • 2001
  • Experimental results are presented, which describe the effect of blowing ratio on film cooling from two rows of holes with opposite orientation angles. The inclination angle is fixed at 35°, and the orientation angles are set to be 45°for the downstream row, and -45°for the upstream row. The studied blowing ratios are 0.5, 1.0 and 2.0. The boundary layer temperature distributions are measured using thermocouple at two downstream locations. Detailed adiabatic film cooling effectiveness and heat transfer coefficient distributions are measured with TLC(Thermochromic Liquid Crystal). The adiabatic film cooling effectiveness and heat transfer coefficient distributions are discussed in connection with the injectant behaviors inferred from the boundary layer temperature distributions. Film cooling performance, represented by heat flux is evaluated from the adiabatic film cooling effectiveness and heat transfer coefficient data. The results show that the investigated geometry provides improved film cooling performance at the high blowing ratios of 1.0 and 2.0.

Film Cooling from Two Rows of Holes with Opposite Orientation Angles: Blowing Ratio Effects (반대방향의 방향각을 갖는 2열 분사구조의 막냉각 특성 : 분사비의 영향)

  • Ahn, J.;Jung, I.S.;Lee, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.113-118
    • /
    • 2000
  • Experimental results describing the effects of blowing ratio on film cooling from two rows of holes with opposite orientation angles are presented. The inclination angle was fixed at $35^{\circ}$ and the orientation angles were set to be $45^{\circ}$ for downstream row. and $-45^{\circ}$ for upsream row. The studied blowing ratios were 0.5, 1.0 and 2.0. The boundary layer temperature distributions were measured using thermocouple at two downstream loundary layer temperature distributions were measured using thermocouple at two downstream locations. Detailed adiabatic film cooling effectiveness and heat transfer coefficient distributions were measured with TLC(Thermochromic Liquid Crystal). The adiabatic film cooling effectiveness and heat transfer coefficient distributions are discussed in connection with the injectant behaviors inferred from the boundary layer temperature distributions. Film cooling performance, represented by heat flux was calculated with the adiabatic film cooling effectiveness and heat transfer coefficient data.

  • PDF

Film Cooling Characteristics with Straight-Slot Coolant Injection by Numerical Study (직선슬롯 분사유동에 의한 막냉각의 열유동 특성에 대한 수치적 연구)

  • Rho, Suk-Man;Son, Chang-Ho;Lee, Geun-Sik
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.359-366
    • /
    • 2000
  • A numerical study has been performed for the 2-dimensional film cooling employed in the cooling of hot components such as gas turbines. The flow and heat transfer characteristics are numerically simulated using FLUENT software. Blowing ratios vary from 0.25 to 5.0 and coolant injection angles vary from $15^{\circ}\;to\;60^{\circ}\;in\;15^{\circ}$ increment. The result shows that, for all cases, there exists a blowing ratio which maximizes film cooling effect (measured by the distance from the slot exit to the downstream wall location at which temperature increases to 900 K) for a given injection angle. It is also observed that the film cooling effectiveness decreases when downstream wall is sunk or lifted. The simulation has been performed using both constant properties and temperature dependent variable properties. It is found that the cases with constant properties overestimate the film cooling effect considerably.

  • PDF

Development of BLDC Motor for HEV Engine Cooling and Battery Cooling System (하이브리드 차량의 엔진 및 배터리 냉각팬 구동용 BLDC모터 개발)

  • Lee, Daewoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.153-160
    • /
    • 2015
  • Hybrid Electric Vehicles(HEVs) have seriously come into prevalence recently as car manufacturers and consumers have become more aware of the environmental and economic problems of conventional vehicles. For the alternative power-train and battery cooling systems in HEVs, an effective thermal management system is required, and many automakers are interested in using Brushless DC(BLDC) motors for cooling fans for the overall traction unit's performance and energy saving capability. This paper presents the development status of BLDC motors as major parts of the power-train, i.e. the engine cooling and battery cooling fans of HEVs. A design that uses BLDC motors for the power-train and each battery cooling fan, is successfully implemented through using electro-magnetic analysis, and prototype BLDC motors are examined. As experimental results, the BLDC motors achieved an efficiency of 85% as engine cooling fans and 72% as a battery thermal management fan motor. The electric cogging noise is significantly reduced by changing the skew of the slot pitch angle and optimizing the magnetic shape.

Studies on the Performance Evaluation of Downsized High-efficiency Cooling Module (높이 축소형 고효율 냉각모듈의 성능 평가에 관한 연구)

  • Jung, Jung-Hun;Shin, Yoon-Hyuk;Park, Sung-Wook;Jeong, Sun-An;Kim, Sung-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.61-67
    • /
    • 2011
  • The cooling module needs enough space (or distance) from hood to absorb the energy from any pedestrian collision. Downsized cooling module for pedestrian protection is important to reduce the severity of pedestrian injury. When a vehicle collision happens, the downsized cooling module is required to reduce the risk of injury to the upper legs of adults and the heads of children. In this study, the performance of cooling module to cool the engine was investigated under 25% height reduction. The heat dissipation and pressure drop characteristics have been experimentally studied with the variation of coolant flow rate, air inlet velocity and A/C operation ON/OFF for the downsized cooling module. The results indicated that the cooling performance was about 94% level compared to that of the conventional cooling module. Therefore, we checked that the cooling module had good performance, and expected that the cooling module could meet the same cooling performance as conventional cooling module through optimization of components efficiency.

가압 경수로(PWR)원전 CVCS 정화 탈염기의 $^{7}$ Li$_3$ 회수 운전 방안 운전 방안

  • 성기방
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.392-397
    • /
    • 1998
  • PWR 원전의 냉각재 화학 및 체적제어 계통(CVCS) 정화 탈염기는 핵연료에서 방출된 핵분열 생성물질과 방사성 부식생성물을 제거하여 계통 내 방사능 준위를 낮추고, 부식을 유발하는 불순물을 제거하여 계통의 건전성을 유지하며, pH 조절제인 리튬($^{7}$ Li$_3$)의 농도조절을 통해 냉각계 수화학 환경을 최적으로 유지시킨다. 이를 위해 CVCS에는 정화용 혼상 탈염기와 $^{7}$ Li$_3$ 조절용 양이온 탈염기가 설치되었으며, 각각의 탈염기는 독립적인 기능을 수행한다. 이는 원전 운전 중 중성자와 붕소($^{10}$ B$_{5}$ )의 핵반응으로 생성된 $^{7}$ Li$_3$3 의 회수가 불가능하기 때문에 정화 탈염기에는 값비싼 $^{7}$ Li$_3$ 포화형 수지를 충전하여야 한다. Pn 원전은 연료교체를 위해 주기적으로 연료계장전 기간을 갖으며 이에 따라 원자로 기동 수화학, 운전중 B/Li 농도조절에 의한 pH 화학, 원자로 정지화학 등의 주기적인 냉각재 수화학 관리를 해오고 있다. 본 연구에서는 효율적인 정화탈염기의 운영방안을 제시함으로 운전중 붕소의 핵분열로 생성되는 $^{7}$ Li$_3$ 의 회수가 가능하고 수지의 사용량 절감으로 수지폐기물 발생량 저감화를 이를 수 있을 것으로 기대된다.

  • PDF

Development of regenerative scramjet combustor with carbon fiber reinforced ceramic matrix composites (탄소섬유 강화 탄화규소 세라믹 복합소재 초음속 재생냉각 연소기 개발)

  • Kim, Seyoung;Kim, Soohyun;Han, Insub;Woo, Sangkuk;Seong, Younghoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.232-235
    • /
    • 2017
  • Scramjet combustor materials are exposed at ultra high temperature over 2000K and severe erosion environment. Inconel alloys are usually applied for combustor material however its mechanical properties are decreased beyond temperature of 1000K so that is impossible for long term operation and reuse. In this study, fiber reinforced ceramic material was used as scramjet combustor material and its feasibility studied. To increase combustion efficiency, regenerative combustor system developed and channel fabrication in composite material also studied.

  • PDF

Analysis of Fixed Bed Reactor for the synthesis of DME from METHANE (천연가스를 이용한 DME 합성 고정층 촉매 반응기 해석)

  • Yoon En Sup;Lee Shin Beom;Ahn Sung Joon;Cho Byoung Hak;Cho Won Il;Baek Young Soon;Park Dal Keun
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.4 s.25
    • /
    • pp.42-49
    • /
    • 2004
  • We study on and simulate the behavior of one-step fixed bed reactor which synthesize DiMethylEther(DME) from Methane. At last, we know that reaction is decreased in case of excess and no cooling because the temperature of reactor is decreased or increased seriously. Also, we study on optimizing the reactor so that we know the optimized operation condition according to cooling effect, space velocity of reactant and temperature of reactant, etc.

  • PDF

Analysis of Gas Cooling System for IR Window (적외선 윈도우용 가스식 냉각장치 해석 기법)

  • Hyun, Cheol-Bong;Goo, Nam-Seo;Kim, Jae-Young;Lee, Ho-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.130-137
    • /
    • 2012
  • In this paper, a post-analysis of cooling system for infrared(IR) window was performed based on heating experiment of IR window system. We applied the same experimental conditions to analysis, and then validated the analysis technique by comparing numerical and experimental results. For an analysis software, we used a professional heat/fluid analysis program and the numerical and experimental results were in fairly good agreement. We investigated the effect of thermal transfer between the frame and IR window and also a cooling efficiency between fluid and structure in order to determine the proper parameters for the analysis. In this study, 100 % thermal transfer between the frame and IR window and 30 % cooling efficiency between fluid and structure have been proposed, which can be used in the future conceptual design and analysis of similar IR windows.

Thermal Design of Hot Components in the Gas Turbine and Ram Jet (가스터빈 및 램제트의 고온 부품 열설계 기술)

  • Cho, Hyung-Hee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.437-438
    • /
    • 2008
  • To improve efficiency and allowable life of gas turbine and ram jet, the proper cooling techniques are needed. It is required not only the basic research of variable cooling techniques but also analysis of real operating conditions when we design the cooling system. From the present experimental and analytical results, we can predict the thermal stress and allowable life. This design process is for a thermal design technique that is the most foundational design technique to improve the efficiency of gas turbines and ram jets

  • PDF