• Title/Summary/Keyword: 내화성능 실험

Search Result 268, Processing Time 0.027 seconds

Evaluation on the Fire Resistance Performance for High-Rise Modular Walls (중·고층형 모듈러 벽체의 내화성능 평가)

  • Yang, Seung-Cho;Lee, Jae-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.15-22
    • /
    • 2019
  • The use of modular buildings is increasing because of various advantages of modular buildings. But there are limits to apply modular buildings to medium-rise buildings because the building law provides only the specification criteria of the modular building with respect to the 1 hour fire resistance performance. This study was conducted to investigate 2 hours fire resistance performance of load bearing walls with steel studs in modular buildings by KS F 2257-1 and KS F 2257-4. After full scale tests, load bearing walls ensuring two hours fire resistance performance consist of at least 2 layers of fire resistance plaster boards of 19mm thickness or 3 layer of fire resistance plaster boards of thickness.

Fire Resistance Performance of Precast Segmental Concrete Lining for Shield Tunnel (쉴드 터널용 프리캐스트 세그먼트 콘크리트 라이닝의 내화성능)

  • Han, Byung-Chan;Harada, kazunori;Kwon, Young-Jin;Kim, Yun Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.95-105
    • /
    • 2014
  • Reinforced concrete (RC) shield tunnel lining must be designed for fireproof performance because the lining is sometimes exposed to very high temperature due to traffic accidents. Both experimental and numerical studies are carried out to evaluate fire resistance performance of precast RC tunnel lining systems. In the experimental studies, six full-scale precast RC tunnel segments are exposed to fire in order to examine the influence of various parameters on the fire resistance performance of precast RC tunnel lining. We used the temperature curve of the RABT criteria, which are severe conditions of fire temperatures. The fire test showed that the explosive spalling was not observed by substituting concrete to PP fiber reinforced concrete. A transient heat flow analysis was carried out in consideration of the material properties that change with temperature, and the results showed good agreement with the test results.

Fire Resistance of Concrete-Filled Circular Steel Tube Columns under Central Axial Loads (일정 축력을 받는 콘크리트충전 원형 강관기둥의 내화성능 평가)

  • Park, Su Hee;Song, Kyung Chul;Ryoo, Jae Yong;Chung, Kyung Soo;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.655-663
    • /
    • 2008
  • In this research, the fire resistance of Concrete-Filled Circular Steel Tube Columns (CFT) was evaluated by numerical analysis. As the materials of CFT columns, the steel of SPSR 400 grade and the concrete of 27.5MPa, 37.8MPa strengths were used. Significant parameters,such as concrete strength, axial load, and cross-sectional dimensions were determined. To verify the accuracy of the numerical analysis,the analysis results were compared with the former experiment results. The effect of the fire resistance time, axial load ratio, cross-sectional dimensions and concrete strength was evaluated by comparison with the fire resistance of the square CFT columns. This research showed that the structural behavior and fire resistance from the findings of numerical parametric studies showed a similarity to that of the experimental results. Therefore, this numerical analysis is reasonable in estimating the fire resistance of the circular CFT column.

An Experimental Study on Structural Behaviour of Asymmetric H Beam Slim floor under Load Condition in Fire (내화 피복된 비대칭 H형강을 적용한 슬림플로어 보의 재하가열조건 화재거동에 관한 실험적 연구)

  • Kim, Hyung-Jun;Kim, Hyung-Jun;Min, Byung-Youl;Lee, Jae-Sung;Park, Soo-Yong
    • Fire Science and Engineering
    • /
    • v.25 no.1
    • /
    • pp.63-71
    • /
    • 2011
  • When it comes to slim floor using asymmetric H-beam, it was designed that the steel member is embedded in concrete with relatively low thermal conductivity so as to minimize the deterioration of rigidity of steel member in fire. But given the bottom flange of asymmetric H-beam is directly exposed to the fire, the measure of applying the fireproof coating to improve the fire rate performance of slim floor beam was sought. The test was aimed at comparing the fireproof performance by adjusting the load ratio of 0.4 and 0.3, and The test was carried out to identify the 3-hour fire performance by reinforcing the beam as well as applying the fireproof coat, In the wake of comparing the specimen depending on variation of load ratio, lowering load ratio by 0.1 resulted in difference of 12 minutes and deflection was 39 mm. It was able to improve 12 minutes by reinforcing the beam and up to 102.4 mm in deflection.

An Evaluation for the Fire Resistance of Concrete-Filled Steel Square Tube Columns under Constant Axial Loads (일정 축력을 받는 콘크리트충전 각형 강관기둥의 내화성능 평가)

  • Park, Su Hee;Ryoo, Jae Yong;Chung, Kyung Soo;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.703-714
    • /
    • 2007
  • The aim of this research is to evaluate the fire resistance of concrete-filled steel square tube columns (square CFT columns) under constant axial loads by numerical analysis. The authors examined the experimental results on the fire resistance of concrete-filled steel square tube columns without fire protection. As the materials of CFT columns, steel of SPSR 400 grade and concrete of 27.5MPa and 37.8MPa strengths were used. The significant parameters were determined, such as load ratio, cross-sectional dimensions, and concrete strength. Detailed analytical simulations of fire resistance and axial deformation showed good agreement with the experimental observations. Therefore, this numerical analysis exhibited a reasonable estimation of fire resistance of the square CFT column. Results of the numerical parametric studies showed that the fire resistance of the CFT columns increased with the decrease of the concrete strength and the increase of the cross-sectional dimensions about the constant axial load ratio ($N/N_c$).

Experimental Study on the Fire Proofing Characteristic of Fire Resistance Panel that it attaches to PSC Airpit-Slab (PSC 풍도슬래브에 부착된 내화패널의 내화특성에 관한 실험연구)

  • Lee, Doo Sung;Bae, Jeong;Choi, Heon;Min, In Gi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.465-473
    • /
    • 2013
  • In this Study, the performance of precast PSC slabs with fire resistance panel for fire resistance of the tunnel system was evaluated by experimentally. The fire test was performed in fire resistance (electric) furnace according to RABT(Richtlinien fur die Ausstatung und den Betrieb von stra${\beta}$entunneln) time heating temperature curve. The test results showed that the measured temperatures at the t=0 mm depth of PSC slab with precast fire resistance panel during a fire was maximum temperature $367^{\circ}C$, lower than $380^{\circ}C$ (ITA 2004), when damage occurs. Also, at the t=25 mm, the maximum temperature was $239^{\circ}C$, which was lower than the damage temperature of rebar, $250^{\circ}C$. From the results, the use of precast fire resistance panel (t=25 mm) improves fire resistance of PSC structures.

An Experimental Study on Setup of Classification System of Fire Resistance Wall Structure (벽체 내화성능 분류체계 설정을 위한 실험적 연구)

  • Choi, Dong-Ho;Kim, Dae-Hoi
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.11a
    • /
    • pp.111-114
    • /
    • 2011
  • 건축물은 화재시 그 피해를 최소화하기 위해서 주요 구조부를 일정 수준의 내화구조로 시공되어야 한다. 현재 국내에서는 건축물 주요 구조부의 내화성능을 인정한 법정 내화구조를 규정하고 있으나 외국에 비하여 내화성능 및 구조의 구분없이 일률적으로 3시간의 내화성능을 규정하고 있으며, 이 경우도 규정된 후 상당한 시일이 경과되어 최근의 재료 및 공법 등을 적절히 수용하지 못하고 있는 실정이다. 이에 따라 현재 건축물 세부구조, 부위별로 내화성능을 세분화하여 규정할 필요가 있으며. 이를 위해 내화구조의 시험 자료를 근거로 한 경제적, 효율적 제도개선이 요구된다. 이에 본 연구에서는 국내의 법정내화구조로 규정된 벽체 구조를 대상으로 내화성능을 평가하여 각 구조별로 법정내화구조를 세분화한 기초자료를 제시하였다.

  • PDF

An Experimental Study on the Fire Damage Evaluation of the Concrete Lining (콘크리트 라이닝의 화재손상 평가에 관한 실험적 연구)

  • Park, Kyung-Hoon;Kim, Heung-Youl;Yoo, Yong-Ho;Kim, Hyung-Jun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.201-206
    • /
    • 2011
  • 최근 국내에서는 대심도 터널 시공계획이 발표되면서 터널 구조물에 대한 방재 및 내화설계에 대한 관심이 높아지고 있다. 화재 발생 시 문제가 발생할 수 있는 콘크리트 라이닝의 내화설계를 위해서는 보다 구체적인 내화성능을 측정하기 위한 내화실험이 실시되어야 한다. 현재 국내에서는 건축물의 내화성능을 평가하기 위한 시험평가 방법이 제시되어 있는 상태이나 터널 구조물에 대한 시험법이나 성능평가는 거의 전무한 상황이다. 따라서 본 연구에서는 콘크리트 구조물의 화재손상 정도를 평가하기 위해 현장에서 사용되고 있는 터널 라이닝을 대상으로 화재 시 콘크리트 라이닝의 손상정도를 평가하였다. 실험은 대표적인 터널 화재시나리오 곡선인 RABT 화재 시나리오를 적용하였으며 폭렬방지에 효과적인 것으로 알려져있는 fiber cocktail(강섬유+폴리프로필렌섬유)의 혼입여부에 따른 성능평가도 함께 실시하였다.

  • PDF

An experimental study on the fireproof performance of fire damper in accordance with insulation conditions on the coaming and blade (코밍 방열 두께 및 블레이드 방열 유무에 따른 방화 댐퍼의 내화성능에 관한 실험적 연구)

  • Choi, Tai-Jin;Kim, Joung-Sik;Choi, Kyeong-Kwan;Lim, Young-Soo;Kim, You-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.431-437
    • /
    • 2013
  • In this paper, Fire resistance test was carried out to obtain class H-120 thermal insulation of fire dampers according to a hydrocarbon fire conditions. Specimens were fabricated three different types according to the change of the insulation system applied to damper blade and coaming which were measured surface temperature by performing the fire resistance test. As a test result, specimen-1, 2 of an uninsulated damper blade were exceeded thermal insulation acceptance criteria at 21 minutes, 46 minutes respectively, but specimen-3 of an insulated damper blade was satisfied thermal insulation acceptance criteria during 120 minutes. The test results showed that the insulation of the damper blade is an important factor in the fireproof performance of fire dampers concerning the coaming length minimum 500 mm on the unexposed side as specified test standard.

Experimental Study on the Fire Resistance of the iTECH Composite Beam (iTECH 합성보의 내화성능에 대한 실험연구)

  • Lee, Sueng Jae;Kang, Seong Deok;Choi, Seng Kwan;Kim, Myeong-Han;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.643-654
    • /
    • 2006
  • Thispaper presents the results of an experimental investigation into the fire performances ofsimply supported iTECH composite beams using an ISO834 standard fire. There are very few independent studies on the fire resistance of composite steel and concrete structures of various designs. The iTECH composite beam system has been used in construction, but nothing is known about its influence in a fire. To evaluate the fire resistance performanceof the iTECH beam, a test was conducted for 4.7m-span-length iTECH beams under given conditions in a laboratory. The fire resistance performance of unprotected coatings of the iTECH beam has been examined, and a longer period of fire resistance was achieved by increasing the beam coating's section size and decreasing its load ratio. Coatings for the fire protection of iTECH beams reduce the rate of temperature rise of the beam in case of fire, and the required thickness of spray-on fire protection coatings can be determined by means of tests.