• 제목/요약/키워드: 내화구조

Search Result 482, Processing Time 0.033 seconds

A Study on the Fire Resistance Performance of Mortars Using Mesoporous Silica Nanoparticles(MSNs) and PVA Fibers (다공성 나노실리카 입자(MSNs)와 PVA섬유를 혼입한 모르타르의 내화성능에 관한 연구)

  • Cheonpyo Park;Jakyung Lee;Taehyung Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.4
    • /
    • pp.51-61
    • /
    • 2023
  • In this study, in order to improve the fire resistance performance of structures in case of fire in buildings and structures, PVA fibers and the ZnO particles combined with mesoporous nano silica (MSNs) were mixed with cement mortar, and the specimen was exposed to a temperature range of 20~1100℃. Then the residual compressive strength and weight change rate were measured to determine whether the fire resistance performance changed. As a result of the study, it was found that mixing mesoporous nano silica and PVA fiber together did not contribute to improving the fire resistance performance of cement mortar. On the other hand, mixing 0.5% of mesoporous nano silica and 0.1 vol% of PVA fiber showed the best improvement test results, showing that it was advantageous for fire resistance performance.

Properties of Temperature History of Lightweight Mortar for Fire Protection Covering Material in High Strength Concrete (고강도 콘크리트 내화피복용 경량 모르터의 온도이력 성상)

  • Lim, Seo-Hyung
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.45-50
    • /
    • 2012
  • The spalling causes the sever reduction of the cross sectional area with the exposure of the reinforcing steel, which originates a problem in the structural behaviour. By coating surface of high strength concrete with fireproof mortar, the high strength concrete is protected from the spalling in fire and the method to constrain the temperature increase of steel bar within the concrete. The purpose of this study is to investigate the temperature history properties of lightweight mortar using perlite and polypropylene fiber for fire protection covering material. For this purpose, selected test variables were the contents and length of polypropylene fiber. As a result of this study, it has been found that addition of polypropylene fiber to mortar modifies its pore structure and this causes the internal temperature to rise. And it has been found that a new lightweight mortar can be used in the fire protection covering material.

Analysis of Internal Structure in Alkali-Activated Fire Protection Materials Using Fly ash (플라이애시를 활용한 알칼리 활성화 내화성 마감재의 내부구조 분석)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.104-112
    • /
    • 2012
  • This study involves investigating the correlation between variation of internal structure and heating temperature of alkali-activated fire protection materials using fly ash. Dehydration and micro crack thermal expansion occur in cement hydrates of cementitious materials heated by fire. Internal structure difference due to both the dehydration of cement hydrates and pore solution causes and influences changes in the properties of materials. Also, this study is concerned with change in microstructure and dehydration of the alkali-activated fire protection materials at high temperatures. The testing methods of alkali-activated fire protection materials in high temperature properties are make use of TG-DSC and mercury intrusion porosimetry measurements. The study results show that the alkali-activated fire resistant finishing material composed of potassium hydroxide, sodium silicate and fly ash has the high temperature thermal stability. These thermal stability is caused by the ceramic binding capacity induced by alkali activation reaction.

  • PDF

Evaluation of Structural Stability at High Temperature for H-section Beams Made of Ordinary Strength Steels by Analytic Method (일반 구조용 강재 적용 H형강 보부재의 해석에 의한 고온내력 평가 연구)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.28 no.2
    • /
    • pp.76-81
    • /
    • 2014
  • Structural stability of structural beams at high temperature had been evaluated though a horizontal furnace and a standard fire curve. If a structural method and a material are satisfied with the fire test, those are seemed to be guaranteed the safety of residences, fire services men, and properties of the buildings. However, that requires not only longer period but higher cost for making and testing of each structural element. That restrained from developing new methods and new fire protective materials. In this study, an analytic method was executed to demonstrate whether the analytic method using mechanical properties of structural steel at high temperature with heat transfer theory works is working. In this paper, the surface temperature rising and variance of structural stability of a simple H-section beam with a standard fire curve were evaluated and structural stabilities of H-section beam according to differences from length of beam were suggested.

Finite Element Analysis of H-Shaped Compressive Member Exposed High Temperatures (고온에 노출된 H-형강 압축재의 유한요소해석)

  • Lee, Swoo-Heon;Lee, Hee-Du;Choi, Jun-Ho;Shin, Kyung-Jae
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.54-59
    • /
    • 2016
  • Steel is a structural material that is inherently noncombustible. On the other hand, it has high thermal conductivity and the strength and stiffness of the material are reduced significantly when exposed to fire or high temperatures. Because the yield strength and modulus of elasticity of steel are reduced by 70% at $350^{\circ}C$ and less than 50% at $600^{\circ}C$, the load-carrying capacity of steel structure at high temperature rapidly lose. To be accepted as a fire-resisting construction, the fire test should be performed at the certificate authority. On the other hand, the fire test on a full-scale structure is limited by time, space, and high-cost. The analytical method was verified by a comparison with the fire test of H-section columns under compression and thermal analysis based on a finite element method using the ABAQUS program, and the numerical analysis method reported in this study was suggested as a complement of an actual fire test.

Chemical Resistance of Low Heat Cement Concrete Used in Wastewater Treatment Structures Built on Reclaimed Land (해안매립지 하수처리시설물에 적용한 저발열시멘트 콘크리트의 내화학성 평가)

  • Chung, Yongtaek;Lee, Byungjae;Kim, Yunyong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.113-119
    • /
    • 2019
  • Concrete structures built on reclaimed land are combined with chemical erosion such as chlorine and sulfate ions from seawater. Chloride attack deteriorates the performance of the structure by corroding reinforcing bars. In addition, the waste water treatment structure has a problem that the concrete is deteriorated by the sulfate generated inside. Therefore, in this study, the characteristics and chemical resistance of low heat cement concrete used in wastewater treatment structures constructed on reclaimed land were evaluated. As a result of the experiment, the target slump and air content were satisfied under all the mixing conditions. The slump of low heat cement (LHC) concrete was higher than that of ordinary portland cement (OPC) concrete, while the air content of LHC concrete was smaller than that of OPC concrete with the same mix proportion. As a result of compressive strength test, OPC concrete showed higher strength at younger age compared to 28 days. In contrast, LHC concrete exhibited higher strength than OPC concrete at the age of 56 days. As a result of chlorine ion penetration tests, LHC-B concrete showed chlorine ion penetration resistance performance of the "very low" level at the age of 56 days. As a result of chemical resistance evaluation, when the LHC concrete is applied without epoxy treatment, chemical resistance is improved by about 18% compared to OPC concrete. In testing chemical resistance, the epoxy coated concrete exhibited less than 5% strength reduction when compared to sound concrete.

Experimental Study on Fire-Resistant Characteristics of Bi-Directionally Prestressed Concrete Panel under RABT Fire Scenario (RABT 화재시나리오를 적용한 이방향 프리스트레스트 콘크리트 패널부재의 내화특성에 관한 실험적 연구)

  • Yi, Na-Hyun;Lee, Sang-Won;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.695-703
    • /
    • 2012
  • Recently, major infrastructure such as bridges, tunnels, PCCVs (Prestressed Concrete Containment Vessel), and gas tanks are Prestressed Concrete (PSC) structure types, which improve their safety by using confining effect from prestressing. Generally, concrete is known to be an outstanding fire resistant construction material. Because of this reason, researches related to extreme fire loaded PSC member behaviors are not often conducted even though PSC behavior under extreme fire loading is significantly different than that of ordinary reinforced concrete (RC) behavior. Therefore, in this study, RABT fire loading tests were performed on bi-directionally prestressed concrete panels with $1000{\times}1400{\times}300mm$ dimensions. The prestressed specimens were applied with 430 kN prestressing (PS) force using unbonded PS thread bars. Also, residual strength structural tests of fire tested PSC and ordinary RC structures were performed for comparison. The study results showed that PSC behavior under fire loading is significantly different than that of RC behavior.