• Title/Summary/Keyword: 내용기반 이미지검색

Search Result 245, Processing Time 0.027 seconds

Classification of KANSEI Vocabulary according to Visual Shape Information (시각적 형태 정보에 관한 감성어휘 분류)

  • Baek Sunk-Young;Hwang Kwang-Su;Kim Pan-Koo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.76-78
    • /
    • 2006
  • 인간의 주관적이고 애매한 감성은 차세대 컴퓨팅의 다양한 분야에서 연구되며. 인간의 감성을 이해하고 감성의 변화에 능동적으로 반응하는 사용자 중심의 정보 처리에 대한 요구가 급격히 증가하고 있다. 우리는 감성기반 이미지 검색을 위해 저차원 시각정보에 대한 강성처리를 연구하고 있다. 기존의 저차원 시각정보 특징을 고려한 내용기반 이미지 검색 방법은 사용자의 취향이나 감성 요구에 적합한 결과를 검색하기에는 많은 어려움이 있다. 본 논문에서는 인간의 감성을 이해, 검색, 인식하기 위한 시각정보와 감성간의 관계 연구 중 우리의 기존 연구인 시각적 형태 정보의 감성어휘 공간에서 형태와 어휘간의 감성거리를 이용한 분류방법을 제안한다. 그리고 분류된 각 영역에서의 대표 어휘를 추출하여 시각적 형태에 따른 감성어휘간의 구체적 계층 관계를 정의한다. 이는 감성기반 이미지 검색 분야에 활용 가능한 연구이며, 우리가 사용하는 언어에 내재된 감성정보를 해석하고 그 어휘들의 체계적인 시각적 감성관계를 정의하는 의의를 갖는다.

  • PDF

Multiple Region-of-Interest Based Image Retrieval Method (다중 관심영역 기반 이미지 검색 방법)

  • Lee, Jong-Won;Nang, Jong-Ho
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.5
    • /
    • pp.314-318
    • /
    • 2010
  • This paper proposes an image retrieval method based on the Multiple Region-of-Interest. In the proposed method, the image is segmented into blocks, among which the blocks overlapped with multiple ROIs are selected. The similarity of images is measured using the MPEG-7 dominant color descriptor(DCD) and considering the relative location of the overlapped blocks. The experimental results showed that the proposed method improves the retrieval performance than the previous methods using the global DCD or comparing the blocks at the same position. In addition, the method that considers the relative position of blocks overlapped with the multiple ROIs also showed a better performance than the existing methods.

Adaptative Retrieval Method for Brain Image using Wavelet (웨이블릿 변환을 이용한 적응적 뇌영상 검색 방안)

  • 구혜영;엄기현
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.11a
    • /
    • pp.447-452
    • /
    • 2001
  • 내용 기반 이미지 검색에서 질감정보는 이미지의 검색 속성으로 사용할 수 있는 중요한 정보를 가지고 있다. 본 논문에서는 검색의 이미지 속성으로서 질감 특징을 사용한다. 의료영상 MRI 중 특히 뇌영상의 검색에서 질감의 특징은 전체 이미지를 대상으로 한 전역 질감 특징 값과 종양이나 뇌출혈 부분 등 정상이 아닌 이상객체 부분의 지역 질감 특징 값을 3단계 웨이블릿 변환을 통해 추출하고 추출된 여러 개의 특징 중 검색 효율성을 높일 수 있는 특징만을 선별하여 검색에 이용하는 방안을 제안한다.

  • PDF

Content-based Image Retrieval Using Data Fusion Strategy (데이터 융합을 이용한 내용기반 이미지 검색에 관한 연구)

  • Paik, Woo-Jin;Jung, Sun-Eun;Kim, Gi-Young;Ahn, Eui-Gun;Shin, Moon-Sun
    • Journal of the Korean Society for information Management
    • /
    • v.25 no.2
    • /
    • pp.49-68
    • /
    • 2008
  • In many information retrieval experiments, the data fusion techniques have been used to achieve higher effectiveness in comparison to the single evidence-based retrieval. However, there had not been many image retrieval studies using the data fusion techniques especially in combining retrieval results based on multiple retrieval methods. In this paper, we describe how the image retrieval effectiveness can be improved by combining two sets of the retrieval results using the Sobel operator-based edge detection and the Self Organizing Map(SOM) algorithms. We used the clip art images from a commercial collection to develop a test data set. The main advantage of using this type of the data set was the clear cut relevance judgment, which did not require any human intervention.

Image Retrieval with Fuzzy Triples to Support Inexact and Concept-based Match (근사 정합과 개념 기반 정합을 지원하는 퍼지 트리플 기반 이미지 검색)

  • Jeong, Seon-Ho;Yang, Jae-Dong;Yang, Hyeong-Jeong
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.8
    • /
    • pp.964-973
    • /
    • 1999
  • 본 논문에서는 퍼지 트리플을 사용하는 내용 기반 이미지 검색 방법을 제안한다. 이미지 내 객체들 사이의 공간 관계는 내용 기반 이미지 검색을 위해 사용되는 주요한 속성들 중의 하나이다. 그러나, 기존의 트리플을 이용한 이미지 검색 시스템들은 개념 기반 검색 방법을 지원하지 못하고, 방향들 사이의 근사 정합을 처리하지 못하는 문제점을 가지고 있다. 이 문제를 해결하기 위하여 본 논문에서는 개념 기반 정합과 근사 정합을 지원하는 퍼지 트리플을 이용한 이미지 검색 방법을 제안한다. 개념 기반 정합을 위해서는 퍼지 소속성 집합으로 이루어진 시소러스가 사용되며, 근사 정합을 위해서는 방향들 사이의 관계를 정량화 하기 위한 k-weight 함수가 각각 이용된다. 이 두 가지 정합은 퍼지 트리플 간의 퍼지 정합을 통하여 균일하게 지원될 수 있다. 본 논문에서는 또한, 개념 기반 정합과 근사 정합에 대한 검색 효과를 정량적으로 평가하는 작업을 수행한다. Abstract This paper proposes an inexact and a concept-based image match technique based on fuzzy triples. The most general method adopted to index and retrieve images based on this spatial structure may be triple framework. However, there are two significant drawbacks in this framework; one is that it can not support a concept-based image retrieval and the other is that it fails to deal with an inexact match among directions. To compensate these problems, we develope an image retrieval technique based on fuzzy triples to make the inexact and concept-based match possible. For the concept-based match, we employ a set of fuzzy membership functions structured like a thesaurus, whereas for the inexact match, we introduce k-weight functions to quantify the similarity between directions. In fuzzy triples, the two facilities are uniformly supported by fuzzy matching. In addition, we analyze the retrieval effectiveness of our framework regarding the degree of the conceptual matching and the inexact matching.

An Automatic Generation Method of the Initial Query Set for Image Search on the Mobile Internet (모바일 인터넷 기반 이미지 검색을 위한 초기질의 자동생성 기법)

  • Kim, Deok-Hwan;Cho, Yoon-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.1
    • /
    • pp.1-14
    • /
    • 2007
  • Character images for the background screen of cell phones are one of the fast growing sectors of the mobile content market. However, character image buyers currently experience tremendous difficulties in searching for desired images due to the awkward image search process. Content-based image retrieval (CBIR) widely used for image retrieval could be a good candidate as a solution to this problem, but it needs to overcome the limitation of the mobile Internet environment where an initial query set (IQS) cannot be easily provided as in the PC-based environment. We propose a new approach, IQS-AutoGen, which automatically generates an initial query set for CBIR on the mobile Internet. The approach applies the collaborative filtering (CF), a well-known recommendation technique, to the CBIR process by using users' preference information collected during the relevance feedback process of CBIR. The results of the experiment using a PC-based prototype system show that the proposed approach successfully satisfies the initial query requirement of CBIR in the mobile Internet environment, thereby outperforming the current image search process on the mobile Internet.

  • PDF

Design of Indexing Agent for Semantic-based Video Retrieval (의미기반 비디오 검색을 위한 인덱싱 에이전트의 설계)

  • Lee, Jong-Hee;Oh, Hae-Seok
    • The KIPS Transactions:PartB
    • /
    • v.10B no.6
    • /
    • pp.687-694
    • /
    • 2003
  • According to the rapid increase of multimedia data quantity recently, various means of video data search has been desired. In order to process video data effectively, it is required that the content information of video data is loaded in database and semantic-based retrieval method can be available for various query of users. Currently existent contents-based video retrieval systems search by single method such as annotation-based or feature-based retrieval, and show low search efficiency and requires many efforts of system administrator or annotator form less perfect automatic processing. In this paper, we propose semantic-based video retrieval system which support semantic retrieval of various users by feature-based retrieval and annotation-based retrieval of massive video data. By user's fundamental query and selection of image for key frame that extracted from query, the agent gives the detail shape for annotation of extracted key frame. Also, key frame selected by user become query image and searches the most similar key frame through feature based retrieval method that propose. Therefore, we design the system that can heighten retrieval efficiency of video data through semantic-based retrieval.

A Multimedia Database System using Method of Automatic Annotation Update and Multi-Partition Color Histogram (자동 주석 갱신 및 다중 분할 칼라 히스토그램 기법을 이용한 멀티미디에 데이터베이스 시스템)

  • Ahn Jae-Myung;Oh Hae-Seok
    • The KIPS Transactions:PartB
    • /
    • v.11B no.6
    • /
    • pp.701-708
    • /
    • 2004
  • Existing contents-based video retrieval systems search by using a single method such as annotation-based or feature-based retrieval. Hence, it not only shows low search efficiency, but also requires many efforts to provide system administrator or annotator with a perfect automatic processing. Tn this paper, we propose an agent-based, and automatic and unified semantics-based video retrieval system, which support various semantics-retrieval of the massive video data by integrating the feature-based retrieval and the annotation-based retrieval. The indexing agent embodies the semantics about annotation of extracted key frames by analyzing a fundamental query of a user and by selecting a key-frame image that is ed by a query. Also, a key frame selected by user takes a query image of the feature-based retrieval and the indexing agent searches and displays the most similar key-frame images after comparing query images with key frames in the database by using the color-multiple-partition histogram techniques. Furthermore, it is shown that the performance of the proposed system can be significantly improved.

Region Based Image Similarity Search using Multi-point Relevance Feedback (다중점 적합성 피드백방법을 이용한 영역기반 이미지 유사성 검색)

  • Kim, Deok-Hwan;Lee, Ju-Hong;Song, Jae-Won
    • The KIPS Transactions:PartD
    • /
    • v.13D no.7 s.110
    • /
    • pp.857-866
    • /
    • 2006
  • Performance of an image retrieval system is usually very low because of the semantic gap between the low level feature and the high level concept in a query image. Semantically relevant images may exhibit very different visual characteristics, and may be scattered in several clusters. In this paper, we propose a content based image rertrieval approach which combines region based image retrieval and a new relevance feedback method using adaptive clustering together. Our main goal is finding semantically related clusters to narrow down the semantic gap. Our method consists of region based clustering processes and cluster-merging process. All segmented regions of relevant images are organized into semantically related hierarchical clusters, and clusters are merged by finding the number of the latent clusters. This method, in the cluster-merging process, applies r: using v principal components instead of classical Hotelling's $T_v^2$ [1] to find the unknown number of clusters and resolve the singularity problem in high dimensions and demonstrate that there is little difference between the performance of $T^2$ and that of $T_v^2$. Experiments have demonstrated that the proposed approach is effective in improving the performance of an image retrieval system.

A Semantic-based Video Retrieval System using Design of Automatic Annotation Update and Categorizing (자동 주석 갱신 및 카테고라이징 기법을 이용한 의미기반 동영상 검색 시스템)

  • 김정재;이창수;이종희;전문석
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.2
    • /
    • pp.203-216
    • /
    • 2004
  • In order to process video data effectively, it is required that the content information of video data is loaded in database and semantic- based retrieval method can be available for various query of users. Currently existent contents-based video retrieval systems search by single method such as annotation-based or feature-based retrieval, and show low search efficiency and requires many efforts of system administrator or annotator form less perfect automatic processing. In this paper, we propose semantic-based video retrieval system which support semantic retrieval of various users by feature-based retrieval and annotation-based retrieval of massive video data. By user's fundamental query and selection of image for key frame that extracted from query, the agent gives the detail shape for annotation of extracted key frame. Also, key frame selected by user become query image and searches the most similar key frame through feature based retrieval method that propose. Therefore, we design the system that can heighten retrieval efficiency of video data through semantic-based retrieval.

  • PDF