Abstract
본 논문에서는 퍼지 트리플을 사용하는 내용 기반 이미지 검색 방법을 제안한다. 이미지 내 객체들 사이의 공간 관계는 내용 기반 이미지 검색을 위해 사용되는 주요한 속성들 중의 하나이다. 그러나, 기존의 트리플을 이용한 이미지 검색 시스템들은 개념 기반 검색 방법을 지원하지 못하고, 방향들 사이의 근사 정합을 처리하지 못하는 문제점을 가지고 있다. 이 문제를 해결하기 위하여 본 논문에서는 개념 기반 정합과 근사 정합을 지원하는 퍼지 트리플을 이용한 이미지 검색 방법을 제안한다. 개념 기반 정합을 위해서는 퍼지 소속성 집합으로 이루어진 시소러스가 사용되며, 근사 정합을 위해서는 방향들 사이의 관계를 정량화 하기 위한 k-weight 함수가 각각 이용된다. 이 두 가지 정합은 퍼지 트리플 간의 퍼지 정합을 통하여 균일하게 지원될 수 있다. 본 논문에서는 또한, 개념 기반 정합과 근사 정합에 대한 검색 효과를 정량적으로 평가하는 작업을 수행한다. Abstract This paper proposes an inexact and a concept-based image match technique based on fuzzy triples. The most general method adopted to index and retrieve images based on this spatial structure may be triple framework. However, there are two significant drawbacks in this framework; one is that it can not support a concept-based image retrieval and the other is that it fails to deal with an inexact match among directions. To compensate these problems, we develope an image retrieval technique based on fuzzy triples to make the inexact and concept-based match possible. For the concept-based match, we employ a set of fuzzy membership functions structured like a thesaurus, whereas for the inexact match, we introduce k-weight functions to quantify the similarity between directions. In fuzzy triples, the two facilities are uniformly supported by fuzzy matching. In addition, we analyze the retrieval effectiveness of our framework regarding the degree of the conceptual matching and the inexact matching.