• 제목/요약/키워드: 내용기반영상검색

검색결과 396건 처리시간 0.025초

다계층 메타데이타 기반 이미지 내용검색 시스템 설계 (Design of Content-based Image Retrival System using Multilevel Metadata)

  • 신용수;홍성용;나연묵
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (1)
    • /
    • pp.142-144
    • /
    • 2002
  • 대부분의 내용기반 이미지 검색 시스템은 이미지의 특징 벡터인 색상, 모양, 그리고 질감에 의해서 유사한 이미지를 검색하는 기법을 제공하고 있다. 최근 이러한 내용기반 이미지 검색 기술은 의료 영상 이미지와 같은 다양한 분야에 적용되고 있으며, 이에 따라서 의료 이미지를 분석하여 저장, 검색하기 위한 데이터베이스 시스템이 증가하고 있다. 그러나, 대량의 이미지로부터 원하는 이미지를 검색하기 위해서는 이미지의 메타데이타를 효율적으로 표현해야 하며, 의미성과 이미지의 특징 데이터를 통합적으로 저장 관리 할 수 있는 이미지 데이터베이스를 설계하고 구축해야만 한다. 본 논문에서는 기존의 내용기반 이미지 검색 기법을 살펴보고. 이미지를 내용기반으로 분류하고 저장할 수 있는 데이터베이스 시스템을 설계하여 효율적인 의미기반 검색을 지원말 수 있는 모델을 제시한다. 다계층 메타데이타 레이어 구조로 이미지에 대한 개념 지식 모델을 표현하고, 이미지내의 객체를 메타데이타로 표현하여 분류할 수 있는 모델을 제안한다. 또한, 이미지 내용검색을 지원하기 위한 시스템 구조를 설계하고, 메타데이타가 저장되기 위한 관계형 모델을 스타 스키마의 형태로 제시한다. 제안된 방법은 의미적인 이미지 내용 검색 방법의 지원에 활용될 수 있다.

  • PDF

다중특징을 이용한 유방종양영상 내용기반검색 시스템 개발 (Development of Content Based Breast Tumor Image Retrieval System Using Multi Features)

  • 김민경;최흥국
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 추계학술발표논문집(상)
    • /
    • pp.43-46
    • /
    • 2004
  • 현재 병리 의사에 의해 주관적으로 이루어지고 있는 병리 영상의 진단에 도움을 주기 위해 병리영상에서 객관적으로 추출 가능한 정보를 이용하여 유방종양 검색 시스템을 개발하였다. 다중 특징을 이용한 내용 기반 검색 방법을 사용하였으며, 영상에서 자동으로 추출 가능한 다양한 특징을 검색의 파라미터로 이용하였다. 진단에 도움을 주기 위해 전체 영상 뿐만 아니라 관심 있는 영역의 부분영상도 추출하여 검색이 가능하게 설계하였으며 시스템의 평가를 위해 단일 특징을 이용하여 영상을 검색 하였을 때와 다중 특징을 이용하여 영상을 검색 하였을 때의 검색율을 비교하였다. 향후 이 시스템은 병리영상의 진단에 있어 객관적이고 높은 재현성을 가지게 하는 보조도구로 사용될 수 있을 것이다.

  • PDF

내용기반 복합 영상 검색 시스템을 위한 적응적 특징 자가선택과 다중 SOFM 신경망 (Adaptive Feature Selef-selection and Multiple SOFM Neural network for Content-based image Retrieval System)

  • 임승린
    • 한국컴퓨터정보학회논문지
    • /
    • 제5권2호
    • /
    • pp.22-29
    • /
    • 2000
  • 본 논문은 복합 영상을 위한 내용기반 영상 검색의 효율을 극대화하기 위한 방법을 제안하였다. 영상 검색을 효율적으로 수행하기 위해서는 영상 검색의 후보를 축소와 함께 최적의 특징을 선택하는 것이 필요하다 한가지 영상 특징 패턴에 기반 한 검색 시스템으로는 다양한 종류의 복합 영상에 대한 검색과정에서 영상 도메인이 변화할 경우 검색 효과를 극대화할 수가 없다. 본 논문에서는 검색 영상 도메인이 변하면 질의 영상 특성에 따라 최적의 특징 패턴을 시스템 스스로 선택하는 적응적 자가 특징 선택 기법 통하여 복합 영상의 검색 효율을 극대화하였다. 제안된 방안에서는 검색 효율을 개별적인 특징들에 비해 3% 향상시킬 수 있었으며 다중 SOFM신경망을 통하여 검색 후보를 축소하였다

  • PDF

웹 기반 사용자 질의 영상 검색 (Web base User Query Image Retrieval)

  • 황병곤;이상열
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2003년도 춘계학술발표대회논문집
    • /
    • pp.728-731
    • /
    • 2003
  • 영상 검색 시스템들은 아직까지 내용 기반에 의한 검색 기술이 실용적으로 쓰일 만큼 높은 성능을 보이고 있지 않기 때문에 대부분 텍스트기반에 의한 검색을 지원하고 있다. 본 논문에서는 웹 에이젼트를 이용하여 웹상에서 멀티미디어 정보를 검색하는 것으로 HTML문서에 나타나는 텍스트 중 영상 이름이나 링크에 붙어 있는 텍스트를 추출하여 멀티미디어 자료를 데이터베이스화하였다. 이 데이터베이스에 저장된 영상 자료는 웹 브라우저에서 질의자의 스케치에 의한 검색과 그리고 예제 영상 질의로 검색하는 방법을 제시하여 질의 효율성을 개선하였다.

  • PDF

다중-해상도 데이터베이스를 위한 효율적인 칼라 영상 기술자의 모델링 (Modelling of Efficient Color Image Descriptor for Multi-resolution Database)

  • 이용환;안효창;조한진;이준환
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2013년도 제47차 동계학술대회논문집 21권1호
    • /
    • pp.35-38
    • /
    • 2013
  • 최근, 대용량 영상 데이터베이스가 축적되면서 영상 인식과 영상 검색 분야가 주목받고 있으며, 다양한 디바이스에 따라 생성되는 영상의 해상도가 상이하게 나타나고 있다. 본 논문에서는 내용-기반 영상 검색을 위한 새로운 칼라 기술자를 제안한다. 제안 알고리즘에서는 공간 칼라 정보에 대한 웨이블릿 변환과 채널 및 변환 서브밴드에 따른 가중치를 적용하여 칼라 특징 벡터를 추출한다. 시뮬레이션을 통하여 제안하는 알고리즘의 검색 성능을 평가하였으며, 유사한 특징 벡터 크기를 기준으로, 기존의 MPEG-7 등의 칼라 검색 기술자보다 다중-해상도의 영상 데이터베이스에서 향상된 검색율을 보임을 확인하였다. 본 논문에서 제시한 알고리즘은 단일 특성의 특징 벡터를 추출하는 검색 기술자로써, 다중 특징으로 결합하기 위한 기본 기술자로 활용될 수 있다.

  • PDF

확률적 부울(Boolean) 모델과 연관성 학습을 통한 내용기반 영상 검색 성능 향상 (Performance Improvement For Content-Based Image Retrieval Using Probabilistic Bollean Model And Relevance Learning)

  • 고병철;변혜란
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (B)
    • /
    • pp.556-558
    • /
    • 2001
  • 전체 영상을 이용하지 않고 영상 안에 포함된 특정 객체 혹은 영역만을 이용하는 "영역에 의한 질의(query-by-region)" 방법은 내용기반 영상 검색 중 상위개념의 방법 이지만, 영상 분할의 한계, 여러개로 분할된 영역을 모두 검색하기 위한 인덱싱 문제, 유사성 측정 시 선형적으로 분리되지 않는 특징 값들에 대한 무리한 선형 조합으로 인한 검색 오류와 같은 많은 문제점을 안고 있다. 따라서 본 논문에서는 영역 기반 영상 검색 시스템인 FRIP에 대하여 영상 분할의 한계를 극복하고, 사용자의 주관성을 영상 검색에 적용하기 위해 확률적 연관성 학습 모델(MPFRL)을 유사성 측정 단계에서 적용 하였고, 아울러 검색 모델로는 기존에 일반적으로 사용되어 오던, 선형 모델을 사용하지 않고 선형 모델보다 유연한 검색 결과를 보여주는 확률적 이접 부울 모델(PDB)을 사용하였다. 또한, 검색 시간을 단축 시키기 위해, 선형 검색 방법에 부울 AND 연산자를 적용 시킴으로써, 검색 시간을 상당부분 단축 할 수 있었다. 실험 결과, 본 논문에서 제안하는 방법(MPFRL+PDB)을 사용할 경우 검색 결과가 선형 조합 보다 향상되는 것을 알 수 있었다. 아울러 사용자 피드백을 통해 사용자가 특징 가중치를 일일이 조절하지 않더라도 단순한 몇 번의 클릭만으로 사용자의 주관성을 반영하고 보다 정확한 검색 결과를 보여 줄 수 있는 시스템을 설계 할 수 있었다.

  • PDF

특징 정보를 이용한 다단계 내용기반 영상 검색 기법 (Multi-Level Content-Based Image Retrieval Technique Using Feature Information)

  • 김봉기;오해석
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 1998년도 국제 컨퍼런스: 국가경쟁력 향상을 위한 디지틀도서관 구축방안
    • /
    • pp.395-405
    • /
    • 1998
  • 최근 멀티미디어 기술의 발전으로 인해 영상을 효율적으로 검색할 수 있는 영상 데이터베이스 시스템이 정보화 사회의 중요한 핵심 기술로 대두되고 있다. 본 논문에서는 내용기반 영상 데이터 검색을 위한 영상 특징 추출 방법으로 색상 정보와 모양 정보를 고려하는 다단계 영상 검색 시스템을 제안하였다. 1단계에서는 색상 정보론 얻기 위해서는 Striker 등이 제시한 색상 분포 특성을 이용한 색인 방법의 문제점을 보완하고 확장해서 지역 색상 분포 특성을 고려한 색인 방법을 사용하여 1차로 영상을 대분류한다. 2단계에서는 1단계에서 대분류된 집단 영상들에 대하여 2차로 모양 정보를 이용하여 사용자가 질의한 영상과 유사한 영상을 최종적으로 검색한다. 모양 정보를 얻기 위해서는 기존 불변 모멘트의 문제점인 많은 연산량과, Jain 등이 제시한 방향 히스토그램 인터섹션 방법에서 제기된 회전에 민감하다는 문제점을 해결하기 위해 물체의 윤곽선에 해당하는 화소들만을 대상으로 연산을 수행하는 향상된 불변 모멘트(Improved Moment Invariants : IMI)를 이용한다. 실험 영상으로 300개의 자동차 영상을 사용하여 기존 방법들과의 비교 실험을 통해 향상된 검색 결과를 얻을 수 있었다.

  • PDF

내용기반 영상 검색 유효성을 측정하는 방법들에 대한 비교 (Precision/Recall vs. Wilcoxon 순위 방법) (Comparison of Retrieval Effectiveness between Precision/Recall and Wilcoxon Test)

  • 장순자;김형중;여인권
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2001년도 추계학술발표논문집
    • /
    • pp.453-457
    • /
    • 2001
  • 영상검색은 문자위주의 검색을 한계로, 그 내용에 기반 한 특징벡터를 이용하여 검색을 수행한다. 특징벡터간의 거리를 계산하고 그 값들에 순위를 매긴다. 이렇게 얻어진 순위 값들을 가지고 사용된 검색방법의 유효성을 검사하는데 Recall/Precision 방법이 이용되고 있다. 질의영상과 같은 군에 속하는 영상이 얼마나 검출되었는지를 검출된 영상에 기반하여 계산하거나, 영상 군에 기반하여 계산하는 방법들이다. 그러나, 검출되는 순위값의 범위를 정하고, 그 범위 내에 속하는 만족하는 값의 개수를 세는 방법을 이용한다. 따라서 주어진 두 샘플의 전체적인 경향을 비교하지는 못한다. 본 연구에서는 순위를 이용하여 비교하고자 하는 두 샘플의 순위들을 결합하여 순위를 매기고 각 샘플들에 매겨진 순위값들의 평균과 분산을 이용하여 각 샘플들을 전체적으로 비교할 수 있다.

  • PDF

내용, 감성, 메타데이터의 결합을 이용한 텍스타일 영상 검색 (Textile image retrieval integrating contents, emotion and metadata)

  • 이경미;박우창;이은옥;권혜영;차은미
    • 인터넷정보학회논문지
    • /
    • 제9권5호
    • /
    • pp.99-108
    • /
    • 2008
  • 본 논문에서는 텍스타일 영상의 내용 데이터, 감성 데이터, 메타데이터를 결합시킨 영상 검색 시스템을 제안한다. 섬유 패션의 정보를 가지고 있는 메타데이터와 영상의 색상 및 감성 색상을 이용한 내용의 결합은 그 동안의 섬유 패션산업과 관련된 영상 검색 시스템에서 진일보된 것이다. 우선 메타데이터의 정보를 통해서 영상을 검색하게 된다 검색된 영상 안에서 색상히스토그램과 색상스케치, 감성 히스토그램을 통하여 주어진 영상과 비슷한 영상들을 검색하게 된다. 본 논문에서는 텍스타일 영상으로부터 감성 특성을 추출하기 위해서, H, Nagumo의 배색이미지차트에서 제안하는 160개 감성어에 대한 감성 색상을 이용하였다. 본 논문에서 제안된 텍스타일 영상 검색 시스템에서 부가적인 기능인 돋보기 기능, 색상 히스토그램 기능, 색상 스케치 기능, 반복 패턴 보기 기능을 통해 검색된 텍스타일 영상들의 정보를 효과적으로 제공함으로써 사용자의 편의를 강화하였다.

  • PDF

영상 검색을 위한 적응적 컴포넌트 분석 시스템 설계 (The Design of Adaptive Component Analysis System for Image Retrieval)

  • 최철;박장춘
    • 한국컴퓨터정보학회논문지
    • /
    • 제9권2호
    • /
    • pp.19-26
    • /
    • 2004
  • 본 논문에서는 내용 기반 영상 검색 시스템(Content Based Image Retrieval System)의 특징 추출(feature extraction)과 분석(analysis)을 위한 방법으로 적응적 컴포넌트 분석(ACA: Adaptive Component Analysis)을 제안하고 있다. 검색을 위해서 영상에서 추출된 특징들은 영상의 도메인(domain)에 따라 적절하게 적용해야만 좋은 검색 결과를 얻을 수 있다. 이러한 조건을 만족시키기 위한 방법으로 본 논문에서는 검색 측정도(retrieval measurement)를 제안하고 있다. ACA는 알고리즘과 시스템적인 관점에서 볼 때, 기존의 내용 기반 영상 검색을 위한 중간 단계라고 할 수 있으며, 검색 속도향상 및 성능 개선에 목표를 두고 있다

  • PDF