• Title/Summary/Keyword: 내부 비정상유동

Search Result 93, Processing Time 0.027 seconds

A study of unsteady characteristics on the pintle nozzle (핀틀 노즐의 비정상 특성연구)

  • Lee, Ji-Hyung;Chang, Hong-Been;Ko, Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.662-665
    • /
    • 2011
  • Pintle technology, which is one of the thrust control method for solid rocket motor, can control the thrust by the control of nozzle throat area through the pintle moving. For studying the unsteady flow characteristics of pintle nozzle by needle type pintle moving, cold flow test and numerical analysis were performed. The pressure distribution on the pintle tip was varied for pintle moving and stopping and thrust was varied by this effects.

  • PDF

환기용 부스 설계 최적화 검증

  • Jang, Ho-Jun
    • Proceeding of EDISON Challenge
    • /
    • 2016.11a
    • /
    • pp.85-89
    • /
    • 2016
  • 실제 환풍용 팬의 수치를 이용하여 환기용 부스의 형상에 대한 내부 유동의 변화 양상과 유동의 정상상태에 따른 해석결과 비교를 수행하였다. 벽면이 기울어진 형상이 직사각형 형상의 부스에 비해 나은 내부 흐름을 보여 환기용 부스에 더 적합한 형상임을 확인할 수 있었다. 비정상 유동과 정상 유동은 해석 결과에서 다소 차이를 보였으며, 이는 차후 실험을 통해 검증할 예정이다.

  • PDF

Steady/Unsteady Cavitating Flow Analysis of Pilot Valve in Flight Actuator System Using Dynamic Moving Mesh (Dynamic Moving Mesh 기법을 이용한 비행조종작동기 제어용 파일럿 밸브 내부 정상/비정상 캐비테이션 유동 해석)

  • Son, Kap-Sik;Lee, Sea-Wook;Kim, Dae-Hyun;Kim, Sang-Beom;Park, Sang-Joon;Jang, Ki-Won;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.634-642
    • /
    • 2011
  • A numerical analysis of steady/unsteady flow applying cavitation model and moving mesh method was carried out in order to analyze flow and response characteristics inside the pilot valve which controls the flight actuator system. The flow of the valve was assessed according to operation temperature and time. This research has found that valve characteristics became stable at above a specific temperature and the cavitation affected valve's performance. Internal pressure and response characteristics of the valve were analyzed and flow characteristics of steady and developed unsteady flow were confirmed to be matched each other.

Development of high efficiency impeller for the process of ABS resin cohesion by using flow measurement (유동계측을 이용한 ABS 수지 응집 공정 혁신을 위한 고성능 교반기 임펠러 개발)

  • Kim, Jung-Hwan;Park, Jae-Hyoun;Lee, Hyun-Sik;Ok, Pyeong-Kweon;An, Ik-Jin
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.325-326
    • /
    • 2006
  • 현 화학플랜트에서 사용되고 있는 ABS 수지 응집 공정의 경우 교반기 내부의 불균일한 유동분포와 유동메커니즘의 문제점은 공정 제품의 생산성을 저하 시키는 원인으로 작용하고 있다. 그러나 우수한 성능의 산업용 교반기를 설계하기 위해선 반드시 교반성능에 영향을 미치는 다양한 내부의 유동특성의 정량적인 실험 데이터 확보가 필요하나, 3차원적 비정상 특성을 나타내는 복잡한 구조의 내부 유동특성에 관한 정량적 해석은 현재까지도 상당한 어려운 문제로 남아있다. 이에 이런 문제점을 개선하여 생산성을 향상시키기 위해서는 PIV 기법을 이용한 교반기 내부의 유동분포와 유동메커니즘을 규명하여 교반기 내부의 최적화된 유동을 형성시키는 임펠러의 형상을 개발하고자 한다.

  • PDF

Vibration Analysis of the Pipeline with Internal Unsteady Fluid Flow by Using Spectral Element Method (스펙트럴요소법을 이용한 내부 비정상류를 갖는 파이프에 대한 진동해석)

  • Seo, Bo-Sung;Cho, Joo-Yong;Lee, U-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.387-393
    • /
    • 2006
  • In this paper, a spectral element model is developed for the uniform straight pipelines conveying internal unsteady fluid flow. The spectral element matrix is formulated by using the exact frequency-domain solutions of the pipe-dynamics equations. The spectral element dynamic analysis is then conducted to evaluate the accuracy of the present spectral element model and to investigate the vibration characteristics and internal fluid characteristics of an example pipeline system.

Numerical Study of Unsteady Supersonic Flow over Tandem Cavities (초음속 비정상 직열배치공동 유동에 관한 수치적 연구)

  • Song, Byeong Ho;Park, Nam Eun;Kim, Jae Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.10-16
    • /
    • 2003
  • The unsteady supersonic flow over tandem cavities has been analyzed by the integration of Navier-Stokes equations with the k-$\varepsilon$ turbulence model. The unsteady flow is characterized by the periodicity due to the mutual relation between the shear layer and the internal flow in cavities. The upwind TVD scheme based on the flux vector split with the van Leer limiters is used. The results show the principal frequency is very reasonable. The principal frequency of the rear cavity due to the front cavity has been analyzed by the combination of the several aspect ratios of cavities. In the case of the front cavity of low aspect ratio, the frequencies of tandem cavities are almost same, because two shear layers developed from each cavity are mixed and developed to one shear layer. However, in the case of the front cavity of high aspect ratio, the characteristis of frequency are very different, because the second shear layer is developed in the diffused first shear layer.

Unsteady Ignition in the Pulse Combustor with Counter Jet Flows (대향분출류가 있는 맥동연소기의 비정상 점화현상)

  • 이창진
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.1
    • /
    • pp.64-72
    • /
    • 1997
  • An analytical study has been performed to investigate the unsteady ignition characteristics of pulse combustion. In many combustion applications, strain rate of the flow can significantly affect the combustion features; ignition, extinction, and reignition. In the pulse combustion, two jets (hot combustion gases and fresh mixtures) coming from the opposite side of the combustor will collide in the combustor forming a stagnation region where the chemical reaction is suppressed by the strain rate until this becomes below the critical value. In this research, the method of large activation energy asymptotic is adopted with one step irreversible kinetics to examine the ignition response to the periodic variation of the strain rate of flow. The results show the variation of the maximum value of strain rate can determine whether the ignition or extinction occur.

  • PDF

A quantitative analysis of aerodynamic noise by sound sources from a nozzle inflow (노즐 내부 유동 소음원에 의한 공력 소음의 정량적 분석)

  • Kwongi, Lee;Cheolung, Cheong;Kyeonghun, Park
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.698-704
    • /
    • 2022
  • In this paper, the radiated aerodynamic noise generated from sound sources of a nozzle inflow is quantitatively investigated and compared with experimental results of externally radiated noise. A high-resolution unsteady compressible Large Eddy Simulation (LES) technique is used to accurately predict the internal and external flow of three types of nozzle shape. Through using the vortex sound source for sound sources, the geometry of nozzle neck is identified as most significant aerodynamic noise sources. For validation of quantitative analysis, the vortex sound source intensity of internal nozzle flow is compared with results of external radiated noise of calculation and experiment.

An one equation method for two dimensional unsteady flows (2차원 비정상유동 해석을 위한 1-방정식 방법)

  • Cho Ji Ryong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.113-123
    • /
    • 1999
  • In this study a pure vector potential method (PVPM) for a three dimensional, unsteady, incompressible flow is proposed. A simplified version for a two dimensional problem is described in detail, and a method to prescribe appropriate boundary conditions is also presented. The resulting numerical algorithm is applied to the cavity flow driven by an impulsively started wall and also to the Stokes' first problem. Some important unsteady/steady features are captured for these two flows, and quantitative agreements of flow variables with available reference database are good.

  • PDF