DOI QR코드

DOI QR Code

A quantitative analysis of aerodynamic noise by sound sources from a nozzle inflow

노즐 내부 유동 소음원에 의한 공력 소음의 정량적 분석

  • Received : 2022.10.25
  • Accepted : 2022.11.21
  • Published : 2022.11.30

Abstract

In this paper, the radiated aerodynamic noise generated from sound sources of a nozzle inflow is quantitatively investigated and compared with experimental results of externally radiated noise. A high-resolution unsteady compressible Large Eddy Simulation (LES) technique is used to accurately predict the internal and external flow of three types of nozzle shape. Through using the vortex sound source for sound sources, the geometry of nozzle neck is identified as most significant aerodynamic noise sources. For validation of quantitative analysis, the vortex sound source intensity of internal nozzle flow is compared with results of external radiated noise of calculation and experiment.

본 논문에서는 노즐 내부 유동의 소음원으로부터 발생되어 방사되는 공력 소음을 정량적으로 분석하였으며, 이를 외부 방사소음 결과와 비교하였다. 세가지 종류의 노즐 형상에 대해 내부 및 외부 유동을 정확히 예측하기 위해 고해상도 수치해석 기법인 비정상 압축성 대와류모사(Large Eddy Simulation, LES) 기법을 사용하였다. 와류소음원(Vortex Sound Source)을 통해 유동소음원을 확인하였으며, 이를 통해 노즐 내부 형상에서 주요 유동소음원의 분포를 확인하였다. 노즐 내부 유동의 와류소음원 레벨과 외부 방사 소음의 예측결과 및 측정결과와 비교하였으며, 이를 통해 정량적 분석을 검증하였다.

Keywords

Acknowledgement

본 과제(결과물)는 교육부와 한국연구재단의 재원으로 지원을 받아 수행된 3단계 산학연협력 선도대학육성사업(LINC 3.0)의 연구결과입니다.

References

  1. T. A. Brungart and G. C. Lauchle, "Modifications of a handheld vacuum cleaner for noise control," Noise Control Eng. J. 49, 73 (2001).
  2. P. P. Kale, M. B. Patil, D. N. Korade, and K. R. Jagpap, "Experimental and CFD analysis of vacuum cleaner exhaust muffler," IOSR-JMCE, 13, 21-27 (2016).
  3. N. A. Jafar, W. M. A. W. M. M. Ali, and L. Ooi, "Noise reduction using flax and kenaf for household vacuum cleaner," JESTEC, 13, 3566-3576 (2018).
  4. I.-H. Son, Y. Noh, E.-H. Choi, J. Y. Choi, Y. J. Ji, and K. Lim, "Optimization of the flow path efficiency in a vacuum cleaner fan," JMechE, 64, 1-11 (2018).
  5. K. Kim, S.-Y. Ryu, C. Cheong, S. Seo, C. Jang, and H. Seol, "Aerodynamic noise reduction of fan motor unit of cordless vacuum cleaner by optimal designing of splitter blades for impeller" (in Korean), J. Acoust. Soc. Kr. 39, 524-532 (2020).
  6. M. J. Lighthill, "On sound generated aerodynamically. I. general theory," Proc. R. Soc. A: Mathematical, Physical and Engineering Sciences, 211, 564-587 (1952).
  7. M. J. Lighthill, "On sound generated aerodynamically. II. turbulence as a source of sound," Proc. R. Soc. A: Mathematical, Physical and Engineering Sciences, 222, 1-32 (1954).
  8. M. S. Howe, "Contributions to the theory of aerodynamic sound, with application to excess jet noise and the theory of the flute," J. Fluid Mech.71, 625-673 (1975). https://doi.org/10.1017/S0022112075002777
  9. K. Lee, S. Lee, S. Lee, C. Cheong, S. Rim, and S. Shin, "Numerical investigation of whistling sound in narrow-gap flow of automobile side mirror," Appl. Acoust. 197, 108893 (2022). https://doi.org/10.1016/j.apacoust.2022.108893
  10. G. Kim, G. Ku, C. Cheong, W. Kang, and K. Kim, "Numerical investigation on reduction of valve flow noise in high pressure gas pipe using perforated plates" (in Korean), J. Acoust. Soc. Kr. 40, 55-63 (2021).
  11. F. Ducros, F. Nicoud, and T. Poinsot, "Wall-adapting local eddy-viscosity models for simulations in complex geometries," Proc. Conf. Numerical Methods for Fluid Dynamics, 293-299 (1998).
  12. C. Wagner, T. Huttl, and P. Sagaut, Large Eddy Simulation for Acoustics (Cambridge University Press, Cambridge, 2007), pp. 27-28.