• Title/Summary/Keyword: 내구성 실험

Search Result 1,160, Processing Time 0.027 seconds

Estimation of Concrete Durability Subjected to Freeze-Thaw Based on Artificial Neural Network (인공신경망 기반 동결융해 작용을 받는 콘크리트의 내구성능 평가)

  • Khaliunaa Darkhanbat;Inwook Heo;Seung-Ho Choi;Kang Su Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.144-151
    • /
    • 2023
  • In this study, a database was established by collecting experimental results on various concrete mixtures subjected to freeze-thaw cycles, based on which an artificial neural network-based prediction model was developed to estimate durability resistance of concrete. A regression analysis was also conducted to derive an equation for estimating relative dynamic modulus of elasticity subjected to freeze-thaw loads. The error rate and coefficient of determination of the proposed artificial neural network model were approximately 11% and 0.72, respectively, and the regression equation also provided very similar accuracy. Thus, it is considered that the proposed artificial neural network model and regression equation can be used for estimating relative dynamic modulus of elasticity for various concrete mixtures subjected to freeze-thaw loads.

An Experimental Study on Strength Properties of Concrete Using Blast-Furnace Slag Subjected to Freezing at Early Age (초기재령에서 동결을 받은 고로슬래그 콘크리트의 강도발현특성에 관한 실험적 연구)

  • Choi, Sung-Woo;Ban, Seong-Soo;Ryu, Deuk-Hyun;Choi, Bong-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.43-51
    • /
    • 2003
  • Recently, to consider financial and constructive aspect usage of Admixture such as Blast-Furnace Slag and Fly-Ash, are increased. Also the use of cold-weather-concrete is increased. Blast-Furnace Slag, a by-product of steel industry, have many advantage to reduce the heat of hydration, increase in ultimate strength and etc. But it also reduces early-age strength, so it is prevented from using of Blast-Furnace Slag at cold-weather-concrete. In this study, for the purpose of increasing usage of Blast-Furnace Slag at cold-weather-concrete, it is investigated the strength properties of concrete subjected to frost damage for the cause of early age curing. The factors of this experience to give early frost damaged were Freezing temperature(-1, -10, $-15^{\circ}C$), Early curing age(0, 12, 24, 48hour), Freezing times(0, 12, 24, 48hour). According to this study, if early curing is carried out before haying frost damage, the strength of concrete used admixture, subjected to frost damage, is recovered. And that properties are considered, the effect of using admixture like blast-furnace-slag, is very high

Bond Behavior of Epoxy Coated Reinforcement Using Direct Pull-out Test and Beam-End Test (직접인발시험과 보-단부 시험을 이용한 에폭시 도막 철근의 부착특성)

  • Kim, Jee-Sang;Kang, Won Hyeak
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.271-278
    • /
    • 2019
  • The corrosion of reinforcements embedded in concrete causes severe deterioration in reinforced concrete structures. As a countermeasure, epoxy coated reinforcements are used to prevent corrosion of reinforcements. When epoxy coated bars are used, the resistance of corrosion is excellent, but epoxy coating on the bars have a disadvantage of reduction in bond capacity comparing to that of normal bars. Therefore, it is necessary to confirm the bond performance of epoxy coated reinforcements through experimental and analytical methods. Bond behaviors of epoxy coated bars for various diameters of 13 and 19mm and thicknesses of cover concrete of 3 types(ratio of cover to bar diameter) are examined. As the diameters of the epoxy coated bars increase, the difference of bond strength between epoxy coated and uncoated bars also increases and damage patterns showed pull out failure. In addition, finite element analysis was performed based on the bond-slip relationship obtained by direct pullout test and compared with the flexural test results. It is considered that flexural member test is more useful than pullout test for simulating the behavior of actual structure.

Investigation on optimum applied potential for corrosion resistance and cavitation-erosion damage reduction of Al alloy in seawater (알루미늄 합금의 해수 내 내식성 및 캐비테이션-침식 손상 저감을 위한 적용전위 규명)

  • Jeong, Gwang-Hu;Park, Il-Cho;Lee, Jeong-Hyeong;Han, Min-Su;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.112-112
    • /
    • 2018
  • 알루미늄 합금은 내구성과 내식성이 우수한 경량 재료이다. 그 중 Al-Mg계 5083 Al 합금은 가공성 및 용접성이 우수하여 선체 재료로 널리 이용되고 있다. 이는 선체 중량의 경량화로 인해, 연료비 절감과 빠른 선속 등 다양한 이점을 지니기 때문이다. 그러나 선박의 고속화에 따라 선체에 가해지는 유체충격이 증가하고, 압력 저하에 기인하여 캐비테이션-침식 손상이 증가할 뿐만 아니라, 염소이온이 존재하는 해수환경에서는 침식과 부식의 시너지효과로 인하여 재료의 손상이 더욱 가속화된다. 이에 대한 다양한 방지책들이 제안되고 있으나, 강한 충격압을 동반한 캐비테이션 침식-부식 복합 손상 환경에서는 다소 한계가 있다. 따라서 본 연구에서는 알루미늄 5083에 대하여 캐비테이션 환경 하에서 일정 전위를 인가하며 침식-부식 손상이 최소화 되는 전위 구간을 규명하고자 하였다. 먼저, 분극 실험을 선행하여 재료의 전기화학적 거동을 파악 한 후 적용 전위구간을 선정하여, 해당 전위를 인가한 상태에서 캐비테이션 실험을 실시하였다. 전기화학적 분극실험과 캐비테이션-전기화학 복합 실험은 $25^{\circ}C$의 해수 하에서 실시하였으며, 시험편의 노출면적은 $3.24cm^2$으로 하였다. 분극 실험은 개로전위로부터 +3 V까지 2 mV/s의 분극속도로 전위를 인가하였고, 기준전극으로 Ag/AgCl, 대극으로 백금전극을 사용하였다. 캐비테이션-전기화학 복합 실험은 정전위를 인가한 상태에서 대향형 진동법으로 진동수 20 kHz, 진폭 $30{\mu}m$ 진동을 20분간 가하였으며, 혼팁과 시험편 사이의 거리는 1 mm로 일정하게 유지하였다. 실험 후 표면 손상의 정량적 분석을 위해 인가된 전위별 전류밀도를 비교하고, 무게감소량을 측정하였으며, 손상경향 파악을 위하여 3D광학현미경과 주사전자현미경(SEM)을 통해 표면을 분석하였다.

  • PDF

Investigation on optimum cavitation-erosion protection potential of anodized 5083-H321 Al alloy in sea water (양극산화 처리된 5083-H321 알루미늄 합금의 해수 내 캐비테이션-침식 방지를 위한 최적 방식전위 규명)

  • Yang, Ye-Jin;Jang, Seok-Gi;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.143-143
    • /
    • 2016
  • 알루미늄 합금은 내구성과 내식성이 우수할 뿐만 아니라 다양한 표면개질을 통해 그 표면 특성을 더욱 향상시킬 수 있다. 특히 Al-Mg계 5083-H321 Al 합금의 경우 가공성 및 용접성이 우수하여 선체 재료로 널리 이용되는데, 이는 선체중량의 경량화가 가능하여 연료비 절감과 빠른 선속 등 다양한 이점을 지니기 때문이다. 그러나 선속의 고속화에 따라 선체에 가해지는 유체충격이 증가하고 정압 저하에 기인하여 캐비테이션-침식 손상이 증가할 뿐만 아니라 해수환경 특성 상염소이온의 존재로 부식이 가속화되는 등 침식 및 부식의 시너지효과로 손상은 크게 증가한다. 이에 대한 방지대책으로 다양한 표면개질 기법이 제안되고 있으나 강한 충격압이 동반된 캐비테이션 침식-부식 복합 손상 환경에서는 표면처리만으로는 불가능할 수 있다. 따라서 본 연구에서는 양극산화된 5083-H321을 대상으로 캐비테이션 환경 하에서 일정 전위를 인가하여 침식-부식 손상이 최소화되는 최적전위를 규명하고자 한다. 이를 위해 먼저 분극 실험을 통해 재료의 전기화학적 거동을 바탕으로 임의의 전위를 선정하고 해당 전위를 인가한 상태에서 캐비테이션 실험을 실시하였다. 이때 분극실험과 캐비테이션-전기화학 복합실험 모두 $25^{\circ}C$의 해수에서 실시하였으며, 전기화학적 분극실험은 유효면적이 $3.24cm^2$인 시편에 2 mV/s의 분극속도로 0 ~ -3 V 까지 인가하였고, Ag/AgCl 기준전극과 백금대극을 사용하였다. 캐비테이션-전기화학 복합 실험은 정전위를 인가한 상태에서 $30{\mu}m$의 진폭으로 20분간 실시하였으며, 혼팁과 시험편 사이의 거리는 1 mm로 일정하게 유지하였다. 실험 후 표면 손상의 정량적 분석을 위해 인가된 전위별 전류밀도를 비교하고, 무게감소량을 측정하였으며, 손상특성 분석을 위해 3D현미경과 주사전자현미경(SEM)을 통해 표면을 분석하였다.

  • PDF

Analysis of Air Voids System Using Image Analysis Technique in Hardened Concrete (화상분석법을 통한 경화 콘크리트의 미세 공극 구조 분석)

  • Yun Kyong-Ku;Jeong Won-Kyong;Jun In-Koo;Lee Bong-Hak
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.741-750
    • /
    • 2004
  • Air voids in hardened concrete have an important influence on concrete durability such as freeze-thaw resistance, surface scaling resistance, and water permeability, and they have been characterized by spacing factor Linear traverse and point count methods in ASTM standard have been used in estimating an air void system in hardened concrete. However, these methods require lots of time and efforts, further they are not repeatable. Image analysis method could be utilized In estimating an air void systems in hardened concrete with a developments of microscope, digital camera and computer program. The purpose of this study was to develope image analysis method and provide a guideline by comparing the results from ASTM method and image analysis method. The concerns were at air void content and diameter distribution, air voids system as well as spacing factors. The experimental variables included air content by air entrained agent (0, 0.01, $0.03\%$) and depth of specimen (top, middle, bottom). The result showed that it was possible to calculate spacing factor using image analysis technique, as well as air content, air diameter distribution, and air structure. This study also contributed in developing an reasonable and repeatable image analysis method.

Application of Oyster Shells as Aggregates for Concrete (콘크리트용 골재로서 굴패각의 활용)

  • 어석홍;황규한;김정규
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.540-548
    • /
    • 2002
  • The purpose of this study is to analyze the application of oyster shells (OS) as aggregates for concrete. For this purpose, five reference mixes with W/C ratios of 0.4 ∼0.6 at intervals of 0.05 were used. The replacement proportion of OS was varied with ratios of 0, 10, 30, 50 and 100% by volume of fine or coarse aggregate in the reference mixes. OS was washed and crushed for using as aggregates. New chemical reaction between crushed OS aggregate and cement paste was tested through XRD and SEM analysis. Two strength properties (compressive and flexural) were considered. Strength tests were carried out at the ages of 1, 3, 7, 14 and 28 days. The variations of workability, air content and density, drying shrinkage of the specimens with different proportions of OS were also studied. Finally, the hollow concrete block using OS as a substitute material for fine aggregate was made for testing the application of OS. Experimental results showed that my new chemical reaction did not occur due to mixing OS in concrete. The workability and strengths decreased with increase in proportion of OS. The same trend was observed in density and unit weight, but air content increased due to the inherent pores in OS, which showed a possibility to produce light weight concrete with low strength by using OS as coarse aggregates for concrete. Tests on hollow concrete block showed that the compressive strength and absorption ratio were satisfied with quality requirements when the fine aggregate was substituted with OS up to 50% in volume.

An experimental study on the application of Cathodic Protection method applying Zn-Al metal spray on the RC structure (Zn-Al 금속용사 전기방식 공법의 콘크리트 구조물 적용성에 관한 실험적 연구)

  • Han, Man-Hae;Lee, Han-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.429-432
    • /
    • 2008
  • Cathodic Protection Method was introduced as a corrosion protection method of metals under the ground or sea. Since 1970, it was applied to corrosion protection method of reinforced concrete structures. After 1990, this method has been used around the world, and its usability was proved. But this method has some problems on the aspect of construction and economy. In order to solve these problems, Cathodic Protection Method by using high durable metal spray was developed. First, the specimen was covered with anodic materials (Zn, Al) by using metal spray. And a performance of corrosion protection was confirmed by measuring corrosion current of specimen. Through the result of experiment, it is possible to know that Cathodic Protection Method by using high metal spray is good to protect to corrosion on reinforced concrete structures.

  • PDF

Theoretical Analysis of Critical Chloride Content in (Non)Carbonated Concrete Based on Characteristics of Hydration of Cement (시멘트 수화 특성 및 탄산화를 고려한 콘크리트의 임계 염소이온량에 대한 해석 기법)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.367-375
    • /
    • 2007
  • Critical chloride content for corrosion initiation is a crucial parameter in determining the durability and integrity of reinforced concrete structures, however, the value is still ambiguous. Most of the studies reporting critical threshold chloride content have involved the experimental measurement of the average amount of the total chloride content at arbitrary time. The majority of these researches have not dealt with this issue combined with carbonation of concrete, although carbonation can significantly impact on critical threshold chloride content. Furthermore, the studies have tried to define the critical chloride content within the scope of their experimental concrete mix proportion at arbitrary time. However, critical chloride content for corrosion initiation is known to be affected by a lot of factors including cement content, type of binder, chloride binding, concentration of hydroxyl ions, and so on. It is necessary to define the unified formulation to express the critical chloride content for various mix proportions of concrete. The purpose of this study is to establish an analytical formulation of the critical chloride content of concrete. In this formulation, affecting factors, such as mix proportion, environment, chemical evolution of pore solution with elapsed time, carbonation of concrete and so on are taken into account. Based on the Gouda's experimental results, critical chloride content is defined as a function of $[Cl^-]$ vs. $[OH^-]$ in pore solution. This is expressed as free chloride content with mass unit to consider time evolution of $[OH^-]$ content in pore solution using the numerical simulation programme of cementitious materials, HYMOSTRUC. The result was compared with other experimental studies and various codes. It is believed that the approach suggested in this study can provide a good solution to determine the reasonable critical chloride content with original source of chloride ions, for example, marine sand at initial time, and sea water penetration later on.

Experimental Study on Strength of Austentic Stainless Steel (STS 304L) Fillet-Welded Connection with Weld Metal Fracture According to Welding Direction (용접방향에 따른 오스트나이트계 스테인리스강(STS304L) 용착금속파단 용접접합부의 내력에 관한 실험적 연구)

  • Kim, Tae Soo;Lee, Hoochang;Hwang, Bokyung;Cho, Taejun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.81-89
    • /
    • 2018
  • Austenitic stainless steels have excellent corrosion resistance, durability and fire resistance. Especially, since STS304L among austenitic types is a low-carbon variation of STS304 and has excellent intergranular corrosion resistance, it can often be used under the welded condition without heat treatment after field welding. This paper investigated ultimate behaviors such as ultimate strength and weld metal fracture mechanism of STS304L fillet-welded connections with TIG(tungsten inert gas) welding through test results. Main variables of specimens are weld length and welding direction against loading. Fracture of specimens are classified into three modes(tensile fracture, shear fracture and block shear fracture). Ultimate strengths were compared according to the welding direction and weld length and TFW series with transverse fillet weld had the highest strength compared with other types(LFW series with longitudinal fillet weld and FW series with all round weld). It is known that current design specifications such as KBC 2016 and AISC2010 underestimated the strength of TFW and LFW specimens and provided unconservative estimates for FW specimens. Finally, strength equations were proposed considering material properties of STS 304L material.