• Title/Summary/Keyword: 내구성 실험

Search Result 1,161, Processing Time 0.031 seconds

The Study for the Air Bubble Deterioration of Combined High Flowing Self-Compacting Concrete (병용계 고유동 자기충전콘크리트의 기포저감을 위한 연구)

  • Choi, Yun-Wang;Kim, Kyung-Hwan;Ruy, Deug-Hyun;Jeong, Jae-Gwon;Kang, Hyun-Jin;Lee, Jae-Nam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.449-452
    • /
    • 2008
  • This study is to manufacture HSCC (High flowing Self-Compacting Concrete) be able to construction without vibration & hardening, and it is stable according to the change of the surface number of aggregate and to examine the factor of reduction occurred before after hardening through the indoor experiment. It is essential to use of the thickener to increase the viscosity in the combined HSCC. In this result, it make more bubbles than HSCC of pulverulent body. The result of study has shown, through the surface air bubble by not passed air bubbles within concrete after hardening, It has bad effect in not only appearance of structures but strength & duration. It is the experiment for air bubble of concrete according to the types of aggregate (fine aggregate), mixing time of concrete, exfoliation, material of model form and so that reduce the air bubble of combined HSCC. Experiments have shown, the effect of exfoliation was bigger than the effect of form for the performance of surface finishing of combined HSCC after hardening according to the exfoliation or material of model form and the opaque guris has good condition of finishing.

  • PDF

Experimental Study of Exterior Panel Properties using Ultra High Performance Concrete (UHPC를 활용한 건축용 외장 패널 특성에 관한 실험적 연구)

  • Park, Oh-Seong;Cho, Hyeong-Kyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.3
    • /
    • pp.229-237
    • /
    • 2022
  • Ultra High Performance Concrete(UHPC) is a construction material that has a low water-binder ratio (W/B), a high-performance chemical admixture(SP), mixing material and steel fiber, and performance superior to that of regular concrete in terms of liquidity and strength. In the study, UHPC was used to prepare construction external panels that can replace existing stone panels. In addition, experiments were conducted to access the effects of differences in chemical admixture input amount, the number of fillers, antifoaming agent and steel fiber. An evaluation, was conducted, such of concrete compressive strength, flexural strength, impact strength, absorption rate, and frost resistance. The results showed compressive strength up to 115.5MPa, flexural strength of 20.3MPa, and an absorption rate of 1%. In this case, impact strength and frost resistance evaluation were satisfied with outward observed.

Uniaxial and Biaxial Flexural Strength of Plain Concrete using Optimum Specimen Configuration (최적실험체 제원에 의한 콘크리트의 일축 및 이축 휨인장강도)

  • Oh, Hongseob;Zi, Goangseup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.185-191
    • /
    • 2010
  • Because the concrete crack that is the reason of the serviceability and durability degradation of concrete structure can be arisen from either the stress magnitude and gradient or other structural and material defects, the crack strength of concrete is hard to accurately evaluate. Especially, stress-state in concrete plate components such as rigid pavement and long span slab is biaxial flexure stress, and the flexural strength of those component may be different than the traditional rupture modulus of concrete subjected to uniaxial stress. In this study, an experimental investigation to assess of mechanical behavior under uniaxial and biaxial flexure stress is conducted and the proposed optimum specimen configuration is adopted. From the test, the modulus of rupture under uniaxial and biaxial stress are decreased as the size of aggregate or specimen is larger. And biaxial flexure strength of concrete specimens is varied from 39.5 to 99.2% as compared with that of uniaxial strength, and the biaxial strength of specimen with 20mm aggregate size is only 76% of uniaxial strength.

A Study on the Ring Deflection According to Compaction of Buried Polyethylene Pipes (지중매설 폴리에틸렌관의 다짐도에 따른 관변형 연구)

  • Seungcheol Baek;Seungwook Kim;Byounghan Choi;Sunhee Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.10
    • /
    • pp.5-10
    • /
    • 2024
  • Flexible pipes have the property of resisting external loads by utilizing the rigidity of the pipe and the surrounding ground, and have recently been in the spotlight because they are lighter in weight and have excellent durability compared to concrete pipes. In this study, the behavior characteristics of buried polyethylene pipe, a representative flexible pipe, were examined. Double-walled and multi-walled polyethylene pipes were used, and the structural behavior of the polyethylene pipe was evaluated based on a 5% deflection of the pipe diameter suggested in the design standards for flexible pipes. For the polyethylene pipe, the material properties of the pipe were identified through a ring stiffness test, and the behavior characteristics in the ground were reviewed through the simulation experiment of the buried polyethylene pipes. In addition, a finite element analysis model was developed based on the results of underground burial simulation experiments, and the behavior characteristics of polyethylene pipes according to backfill conditions were evaluated using the developed finite element analysis model and design equation. As a result of the study, it was confirmed that the capacity of the pipes and the compaction of the backfill are the main factors that determine the structural performance of the buried polyethylene pipe.

A Study for Field Application of Environmental-friendly Waterproof Method for Riverbed (친환경 하상차수공법 현장 적용성에 관한 연구)

  • Park, Minchul;Kim, Seonggoo;Kwak, Nokyung;Shin, Hyohee;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.71-80
    • /
    • 2011
  • In period of rapid economic development, as doing river conservation work by using harmful materials environmental pollution has adversely effected humans, animals and plants frequently. For recovery of environmental pollution it needs a lot of time and cost. Therefore, in this study, in order to take an environment-friendly method which is also economical and durable both results of the laboratory model test and field test were compared and analyzed. According to the results of the laboratory model test, those methods such as concrete paving, asphalt paving, bentonite mat, stabilized soil method and mixed soil method have small amount of seepage, but on the other hand compaction soil, grassland and permeable materials have considerable amount of seepage. The results of field test show a similar tendency with laboratory test and have been satisfied to assess standard of domestic water permeability below $1.0{\times}10^{-7}cm/sec$ and unconfined compressive strength is also than 1.0MPa so it has been satisfied about standard. In conclusion, as compaction rate increased, as unconfined compression strength increased and coefficient of permeability decreased.

Properties of Alkali-Activated Cement Mortar by Curing Method (양생 방법에 따른 알칼리활성 시멘트 모르타르의 특성)

  • Kim, Ji-Hoon;Lee, Jae-Kyu;Hyung, Won-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.117-124
    • /
    • 2014
  • Globally, there are environmental problems due to greenhouse gas emissions. $CO_2$ emissions rate of the cement industry is very high, but the continued demand of cement is needed in the future. In this study, in order to reduce the environmental impact of $CO_2$ emissions from cement production. The experiments were carried out for the development of non-sintered cement (have not undergone firing burning) by granulated ground blast furnace slag. In order to compare the characteristics by curing, an experiment was conducted by changing the curing conditions such as atmospheric steam curing, observe the mechanical properties for the measurement of flexural compressive strength by mortar, observe the chemical properties such as acid resistance, $Cl^-$ penetrate resistance and analyzed the mechanism of hydration by XRD, SEM experiments. From the experimental results, as compared with portland cement usually confirm the mechanical and chemical properties excellent, it is expected be possible to apply to the undersea, underwater and underground structures that require superior durability. In addition, based on the excellent compressive strength by steam curing, it is expected to be possible to utilize as a cement replacement material in the secondary product of concrete. In the future, to solve the problem through continued research, it will be expected to reduce the effect of environmental load and to be excellent economics.

An Experimental Study on Alkali-Silica Reaction of Alkali-Activated Ground Granulated Blast Furnace Slag Mortars (알칼리 활성 고로슬래그 미분말 모르터의 알칼리-실리카 반응에 관한 실험적 연구)

  • Kim, Young-Soo;Moon, Dong-Il;Lee, Dong-Woon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.4
    • /
    • pp.345-352
    • /
    • 2011
  • The purpose of this study was to investigate the expansion of alkali-activated mortar based on ground granulated blast furnace slag containing reactive aggregate due to alkali-silica reaction. In addition, this study was particularly concerned with the behavior of these alkaline materials in the presence of reactive aggregates. The experimental program included expansion measurement of the mortar bar specimens, as well as the determination of the morphology and composition of the alkali-silica reaction products by using scanning electron microscopy(SEM), and energy dispersive x-ray(EDX). The experiment showed that while alkali-activated ground granulated blast furnace slag mortars showed expansion due to the alkali-silica reaction, the expansion was 0.1% at Curing Day 14, showing that it is safe. After the accelerated test, SEM and BEM analysis showed the presence of alkali-silica gel and rim around the aggregate and cement paste. According to the EDX, the reaction products decreased markedly as alkali-activated ground granulated blast furnace slag was used. In addition, for the substitutive materials of mineral admixture, a further study on improving the quality of alkali-activated ground granulated blast furnace slag is needed to assure of the durability properties of concrete.

A Study on Resistance of Chloride Ion Penetration in Ground Granulated Blast-Furnace Slag Concrete (고로슬래그 미분말 콘크리트의 염화물 침투 저항성에 관한 연구)

  • Song, Ha-Won;Kwon, Seung-Jun;Lee, Suk-Won;Byun, Keun-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.400-408
    • /
    • 2003
  • Chloride ion inside concrete destroys the so-called passive film surrounding reinforcing bars inside concrete so that the so-called salt attack accelerates corrosion which is the most critical factor for durability as well as structural safety of reinforced concrete structures. Recently, as a solution of the salt attack, the ground granulated blast-furnace slag(GGBFS) have been used as binder or blended cement more extensively. In this paper, characteristics of chloride ion diffusion for the GGBFS concrete, which is known to possess better resistance to damage due to the chloride ion penetration than ordinary portland cement(OPC) concrete possesses, are analyzed and a chloride ion diffusion model for the GGBFS concrete is proposed by modifying an existing diffusion model for the OPC concrete. The proposed model is verified by comparing diffusion analysis results using the model accelerated chloride penetration test results for concrete specimens as well as field test results for an RC bridge pier. Then, an optimal resistance condition to chloride penetration for the GGBFS concrete is obtained according to degrees of fineness and replacement ratios of the GGBFS concrete. The result shows that the GGBFS concrete has better resistance to chloride ion penetration than OPC concrete has and the resistance is more affected by the replacement ratio than the degree of fineness of the GGBFS.

Effect of Emulsified Refine Cooking Oil and Expandable Microsphere on Durability of High-Volume Blast Furnace Slag Concrete (정제유지류 및 팽창성 인공 기포 조합이 고로슬래그 다량치환 콘크리트의 내구성 및 미시적 특성에 미치는 영향)

  • Han, Min-Cheol;Han, Dongyeop;Lee, Myung-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.2
    • /
    • pp.201-207
    • /
    • 2015
  • In this paper, a series of experiments was conducted to evaluate the resistibility of carbonation and freeze-thawing damage of the high-volume blast furnace slag concrete using expancel, the expandable microsphere, and ERCO, emulsified refine cooking oil. The concrete mixture of 0.45 water-to-binder ratio with 60% of blast furnace slag was evaluated for carbonation, freeze-thawing resistibility, SEM, and porosity. According to the previous research, replacing ERCO contributes on improving carbonation resistibility with capillary pore filling effect by soap foaming reaction of ERCO while significantly decreased freeze-thawing resistibility. To improve this decreased freeze-thawing resistibility, expancel was used, and thus freeze-thawing resistibility was improved as the replacement ratio of expancel was increased. It is considered that the selective volume shrunken effect of expancel due to the external pressure and decreased air void spacing factor due to expancel.

Comparison and Analysis on the Process of Master Curve Determination for Hot Mix Asphalt (아스팔트 혼합물의 마스터곡선 작성 방법의 비교 및 분석)

  • Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4199-4204
    • /
    • 2011
  • The dynamic modulus of hot mix asphalt is one of the important indicators to evaluate the durability and performance of asphalt pavement. In resent, the dynamic modulus is suggested by a key property of asphalt pavement design and analysis in AASHTO 2002 Design Guide and Korean Pavement Research Project(KPRP). Master curve from laboratory test results should be needed for pavement design and analysis. The process to get the master curve is standardized. But, there are some setup and testing error at low temperature(-$10^{\circ}C$) and high temperature ($55^{\circ}C$). In this paper, a simplified process which is used 3 testing temperatures (5, 21, 40) is adopted to get the master curve. Comparison was carried out for standard process and simplified process. The suggested process can be used to get the master curve of asphalt pavement, even though some difference was shown at high temperature.