Folope 등(1999년)은 악성 연부조직 거대 세포종과 임상적, 병리학적, 면역조직화학적으로 유사하나, 악성도가 낮은 연부조직 거대 세포종을 보고하였다. 본 교실에서 치료한 1례는 30세 여자 환자로 내원 1년전부터 우측 슬관절 전외측부에 만져지는 종물과 동통을 주소로 내원하였다. 절제 생검을 통한 조직학적 소견상 거대 세포와 함께 호산성 세포질과 소포성의 핵을 지닌 다형성의 기질 세포 병변은 낮은 악성도의 연부조직 거대 세포종에 합당하였고, 이에 저자들은 낮은 악성도의 연부조직 거대 세포종 1례를 경험하였기에 문헌고찰과 함께 보고하는 바이다.
오늘날의 백신은 일반적으로 시그니처 기반 탐지법을 이용한다. 시그니처 탐지기법은 악성코드의 특정한 패턴을 비교하여 효율적이고 오탐율이 낮은 기법이다. 하지만 알려지지 않은 악성코드와 난독화 기법이 적용된 악성코드를 분석하는데 한계가 있다. 악성코드를 실행하여 나타나는 행위를 분석하는 동적분석 방법은 특정한 조건에서만 악성행위를 나타내는 은닉형 악성코드(Evasive Malware)를 탐지하는 데 한계를 지닌다. 본 논문에서는 은닉형 악성코드에 적용된 기법에 관하여 소개하고 나아가 이를 탐지하기 위한 방법에 관한 기술동향을 소개한다.
최근 AV 벤더들의 악성코드 동향 보고서에 따르면 신종, 변종 악성코드의 출현 개수가 기하급수적으로 증가하고 있다. 이에 따라 분석 속도가 떨어지는 수동적 분석방법을 대체하고자 기계학습을 적용하는 악성코드 분석 연구가 활발히 연구되고 있다. 하지만 지도학습기반의 기계학습을 이용할 때 많은 연구에서 AV 벤더가 제공하는 신뢰성이 낮은 악성코드 패밀리명을 레이블로 사용하고 있다. 이와 같이 악성코드 레이블의 낮은 신뢰성 문제를 해결하기 위해 본 논문에서는 새로운 레이블링 기법인 "Unified Labeling"을 소개하고 나아가 Fine-grained 방식의 특징 분석을 통해 악성 행위 유사성을 검증한다. 본 연구의 검증을 위해 다양한 기반의 클러스터링 알고리즘을 이용하여 기존의 레이블링 기법과 비교하였다.
최근 IT 산업의 지속적인 발전으로 사용자들을 위협하는 악성코드, 피싱, 랜섬웨어와 같은 사이버 공격 또한 계속해서 발전하고 더 지능화되고 있으며 변종 악성코드도 기하급수적으로 늘어나고 있다. 지금까지의 시그니처 패턴 기반의 탐지법으로는 이러한 방대한 양의 알려지지 않은 악성코드를 탐지할 수 없다. 따라서 CNN(Convolutional Neural Network)을 활용하여 악성코드를 탐지하는 기법들이 제안되고 있다. 이에 본 논문에서는 CNN 모델 중 낮은 인식 오류율을 지닌 모델을 선정하여 정확도(Accuracy)와 F1-score 평가 지표를 통해 비교하고자 한다. 두 가지의 악성코드 이미지화 방법을 사용하였으며, 2015 년 이후 ILSVRC 에서 우승을 차지한 모델들과, 추가로 2019 년에 발표된 EfficientNet 을 사용하여 악성코드 이미지를 분류하였다. 그 결과 2 바이트를 한 쌍의 좌표로 변환하여 생성한 256 * 256 크기의 악성코드 이미지를 ResNet-152 모델을 이용해 분류하는 것이 우수한 성능을 보임을 실험적으로 확인하였다.
인터넷의 발달로 많은 정보에 쉽게 접근할 수 있게 되었지만, 이에 따라 악의적인 목적을 가진 프로그램의 침입 경로가 다양해졌다. 그리고 전통적인 시그니처 기반 백신은 변종 및 신종 악성코드의 침입을 탐지하기 어렵기 때문에 많은 사용자들이 피해를 입고 있다. 시그니처로 탐지할 수 없는 악성코드는 분석가가 직접 실행시켜 행위를 분석해 볼 수 있지만, 변종의 경우 대부분의 행위가 유사하여 비효율적이라는 문제점이 있다. 본 논문에서는 변종이 대부분의 행위가 유사하다는 것에 착안하여 기존 악성코드와의 행위 유사성을 이용한 탐지 방법을 제안한다. 제안 방법은 변종들이 공통적으로 가지는 행위 대상과 유사한 행위 대상을 갖는 프로그램을 탐지하는 것이다. 1,000개의 악성코드를 이용해 실험한 결과 변종의 경우 높은 유사도를 보이고, 아닐 경우 낮은 유사도를 보여 행위 유사도로 변종을 탐지할 수 있음을 보였다.
낮은악성가능성을 가진 다방성낭성신장생성물은 신종양 중 비교적 드문 타입으로 비교적 좋은 예후를 보인다. 이 종양은 주로 다방성의 신낭종으로 관찰되며 출혈을 동반한 복합신낭종으로 보이는 경우는 흔치 않다. 본 연구에서는 낮은악성가능성을 가진 다방성낭성신장생성물 증례를 보고하고 논문을 고찰하고자 한다.
악성 흑색종은 멜라닌모세포로부터 유래되는 종양으로서, 이의 병인에 대하여서는 현재까지 확실히 구명된 바 없으나, 외상이나 만성 자극 등에 의하여 발생되는 것으로 알려져 있다. 이는 전체 악성 종양의 1.2%를 차지하는 발생빈도가 매우 낮은 질환으로서, 대부분 피부에서 발생되고, 점막에서의 발생은 매우 드물다. 특히 비강과 부비동에서 원발되는 경우는 전체 악성 흑색종의 0.6%-0.7%에 불과하며, 예후가 극히 불량하다. 비강과 부비동의 원발성 악성 흑색종은 50세-70세 사이에서 호발되고, 사춘기 이전에는 거의 발생되지 않으며, 남녀 성 차는 없는 것으로 알려져 있다. 또한 비폐색과 비출혈이 가장 흔한 증상이며, 간혹 비루, 안모종창, 두통등을 호소하기도 하나, 종물이 상당한 크기로 성장되기 전에는 특이한 임상증상을 보이지 않으므로 이의 조기발견 및 적절한 치료가 요구된다. 저자들은 최근 안모종창과 동통을 주소로 내원한 36세 여자 환자의 비강과 부비동에 원발된 악성 흑색종 1예를 경험하였기에 문헌고찰과 함꼐 이를 보고하는 바이다.
본 연구는 태령 19일된 백서 태자 두 개관에서 분리한 골모세포유사세포에 화학발암물질인 7,12-Dimethylbenz(a)anthracene (DMBA: 0.5 ㎍/ml) 및 tumor promotor인 12-O-tetradecanoyl-phorbol-13-acetate (TPA; 1.0 ㎍/ml)를 단독 혹은 복합 처리하여 PTRCC-DMBA, RCC-DMBA 및 RCC-DMBA-TPA 세포주를 확립시키고, 각 세포의 세포형태, 세포성장곡선, alkaline phosphatase와 acid phosphatase 활성 및 in vitro tumorigenicity를 연구하였다. 또한 c-myc, c-랜, c-jun, p53 및 Rb 유전자의 발현변화와 항암단백질인 p53 및 pRb 단백질의 발현변화를 관찰하여 골모세포유사세포가 악성형질전환되는 분자기전의 일단을 연구하고자 시행하였다. 본 실험에 사용한 모든 세포군에서 높은 aikaline phosphatase 활성과 낮은 acid phosphatase/alkaline phosphatase ratio를 보여 골모세포의 특성을 나타내었다. RCC-DMBA와 RCC-DMBA-TPA 세포는 정상세포나 PTRCC-DMBA에 비해 빠른 성장속도를 보였으며, 또한 SOFT AGAR상에서 colony를 형성하여 anchorage-independent growth를 나타내었다. 화학발암 물질로 악성변형된 세포들은 정상세포나 PTRCC-DMBA 세포에 비해 c-myc 유전자의 과발현이 관찰되었다. 정상세포에서 p53 유전자의 발현은 1.9 kb의 message만이 발현되었다. 그러나 화학발암물질로 형질전환된 세포에서는 1.9 kb message외에도 1.6 kb의 message가 더 발현되었으며, message의 양도 현저히 증가되었다. p53 단백질의 발현은 RCC-DMBA-TPA 세포에서 정상세포에 비해 현저히 감소하였으나, RCC-DMBA 세포에서는 유사한 경향을 보였다. Rb 유전자의 발현은 RCC-DMBA-TPA 세포에서만 현저히 감소하였으나, Rb 단백질의 발현은 정상세포에 비해 형질전환된 세포들에서 모두 현저히 감소되었고, 특히 RCC-DMBA-TPA 세포에서는 거의 발현되지 않았다. 이상의 결과에서 백서 태자 두 개관에서 분리한 골모세포유사세포는 화학발암물질인 DMBA에 의해 악성형질전환이 유도되었으며, c-myc의 과발현 및 p53과 Rb 단백질의 발현감소가 정상 골모세포유사세포의 악성변형과정에 밀접히 연관되어 있음을 시사한다.
본 논문에서는 악성코드의 시스템 콜 빈도수를 특징값으로 행위 기반 탐지(behavior-based detection)를 할 때, 시스템 콜의 속성 개수보다 학습데이터 개수가 적더라도 효과적으로 악성 코드를 탐지하는 기법을 제안한다. 이 연구에서는, 프로그램 코드가 동작할 때, 발생시키는 윈도우 커널 데이터인 Native API를 수집하여 빈도수로 정규화한 것을 기본적인 속성 값으로 사용하였다. 또한 악성코드와 정상 코드를 효과적으로 분류할 수 있으면서, 악성코드를 분류하기 위한 기본적인 속성의 개수보다 학습데이터 개수가 적어도 적용 가능한 GLDA(Generalized Linear Discriminant Analysis)를 사용하여, 새로운 속성 값들로 전환하였다. 분류 기법으로는 베이지언 분류법의 일종인 kNN(k-Nearest Neighbor) 분류법을 이용하여 악성 코드를 탐지하였다. 제안된 탐지 기법의 성능을 검증하기 위하여 수집된 Native API 로 기존의 연구 방법과 비교 검증하였다. 본 논문에 제안된 기법이 탐지율(detection rate) 100%인 Threshold 값에서, 다른 탐지 기법보다 낮은 오탐율(false positive rate)을 나타내었다.
사물인터넷(IoT) 기기의 확산으로 인해 다양한 아키텍처가 존재하는 Linux 운영체제의 활용이 증가하였다. 이에 따라 Linux 기반의 IoT 기기에 대한 보안 위협이 증가하고 있으며 기존 악성코드를 기반으로 한 변종 악성코드도 꾸준히 등장하고 있다. 본 논문에서는 시각화한 ELF(Executable and Linkable Format) 파일의 바이너리 데이터를 영상처리 기법 중 LBP(Local Binary Pattern)와 Median Filter를 적용하여 CNN(Convolutional Neural Network)모델로 악성코드를 분류하는 시스템을 제안한다. 실험 결과 원본 이미지의 경우 98.77%의 점수로 가장 높은 정확도와 F1-score를 보였으며 재현율도 98.55%의 가장 높은 점수를 보였다. Median Filter의 경우 99.19%로 가장 높은 정밀도와 0.008%의 가장 낮은 위양성률을 확인하였으며 LBP의 경우 전반적으로 원본과 Median Filter보다 낮은 결과를 보였음을 확인하였다. 원본과 영상처리기법별 분류 결과를 다수결로 분류했을 경우 원본과 Median Filter의 결과보다 정확도, 정밀도, F1-score, 위양성률이 전반적으로 좋아졌음을 확인하였다. 향후 악성코드 패밀리 분류에 활용하거나 다른 영상처리기법을 추가하여 다수결 분류의 정확도를 높이는 연구를 진행할 예정이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.