• Title/Summary/Keyword: 날개-동체 형상

Search Result 24, Processing Time 0.022 seconds

Design and Analysis of Wing-Tip and Wing-Body Fairings (날개 끝과 날개 동체 페어링의 설계 및 공력해석)

  • Park, Sang-Il;Kwak, Ein-Keun;Lee, Seung-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.289-296
    • /
    • 2011
  • In this study, fairing configurations for an aircraft are designed and the aerodynamic analyses of the fairings are performed to find the best choice for the aircraft. Fairings considered are wing-tip fairing and wing-body fairing. Wing alone analyses are done for the wing-tip faring selection, while wing-body-tail analyses are done for the wing-body fairing selection. A 3-D RANS solver with Menter's ${\kappa}-{\omega}$ SST turbulence model are used for the aerodynamic analyses. The effects on the drag of the aircraft are examined by comparing the analysis results with and without the farings.

Aeroelastic Response Analysis for Wing-Body Configuration Considering Shockwave and Flow Viscous Effects (충격파 및 유동점성 효과를 고려한 항공기 날개-동체 형상에 대한 공탄성 응답)

  • Kim, Dong-Hyun;Kim, Yu-Sung;Hwang, Mi-Hyun;Kim, Su-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.984-991
    • /
    • 2009
  • In this study, transonic aeroelastic response analyses have been conducted for the DLR-F4(wing-body) aircraft configuration considering shockwave and flow separation effects. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to wing-body configurations. In transonic flight region, the characteristics of static and dynamic aeroelastic responses have been investigated for a typical wing-body configuration model. Also, it is typically shown that the current computation approach can yield realistic and practical results for aircraft design and test engineers.

Effect of Centerbody on the Vortex Flow of a LEX-Delta Wing Configuration (중앙동체가 LEX-삼각날개 형상의 와류에 미치는 영향)

  • Sohn, Myong-Hwan;Chung, Hyoung-Seog
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.9-17
    • /
    • 2005
  • An experimental study of the vortical flow over a yawed delta wing with leading edge extension(LEX) was conducted to investigate the effects of the existence of a centerbody configuration on the flow characteristics of the wing and LEX vortices using off-surface visualization and PIV measurements. The qualitative investigation using these two techniques indicated that the effect of the centerbody existence on the vortex formation was minimal at somewhat low range of angles of attack and sideslip angles. However, the quantitative analysis of the surface pressure measurements revealed the effect of centerbody existence to be prominently increased for the cases with higher angles of attack and sideslip angles. It was also found that the centerbody effect was not significant compared to the effect of sideslip for the present LEX-delta wing configuration.

Grid Convergence on Surface Pressure Distribution over the RAE-A Wing-Body Configuration (RAE-A 날개-동체 형상의 압력 분포에 대한 격자 수렴성 연구)

  • Kim, Ki Ro;Park, Soo Hyung;Sa, Jeong Hwan;Cho, Kum Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.3
    • /
    • pp.226-232
    • /
    • 2017
  • Surface pressure distributions over the RAE-A wing-body configuration were investigated and the grid convergence along the streamwise, spanwise, and circumferential directions was numerically studied. Flow analysis in subsonic and transonic conditions was conducted using the $k-{\omega}$ Wilcox-Durbin+ turbulence model. Surface pressure distributions for subsonic flows were well matched, but those for transonic shocked flows showed a little discrepancy with the experimental data. A cubic spline extrapolation method was applied in order to investigate the grid convergence. This method presented that the grid resolution in the circumferential direction is the most important grid parameter. A refined grid system was made based on the grid convergence study and provided more accurate prediction, especially on the symmetric body surface of RAE-A configuration.

Numerical Simulation for Transonic Wing-Body Configuration using CFD (CFD를 이용한 천음속 날개-동체 형상 해석)

  • Kim, Younghwa;Kang, Eunji;Ahn, Hyokeun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.3
    • /
    • pp.233-240
    • /
    • 2017
  • The flowfield around transonic wing-body configuration was simulated using in-house CFD code and compared with the experimental data to understand the influence of several features of CFD(Computational Fluid Dynamics) ; grid dependency, turbulence models, spatial discretization, and viscosity. The wing-body configuration consists of a simple planform RAE Wing 'A' with an RAE 101 airfoil section and an axisymmetric body. The in-house CFD code is a compressible Euler/Navier-Stokes solver based on unstructured grid. For the turbulence model, the $k-{\omega}$ model, the Spalart-Allmaras model, and the $k-{\omega}$ SST model were applied. For the spatial discretization method, the central differencing scheme with Jameson's artificial viscosity and Roe's upwind differencing scheme were applied. The results calculated were generally in good agreement with experimental data. However, it was shown that the pressure distribution and shock-wave position were slightly affected by the turbulence models and the spatial discretization methods. It was known that the turbulent viscous effect should be considered in order to predict the accurate shock wave position.

Canard-Leading Edge Flap Scheduling for the Maneuverability Enhancement of a Fighter Class Aircraft (전투기급 항공기 기동성 증대를 위한 카나드-앞전플랩 스케줄링)

  • Chung, In-Jae;Kim, Sang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.165-170
    • /
    • 2007
  • During the conceptual design phase of a wing-body-canard type fighter class aircraft, as a method of maneuverability enhancement for an aircraft, effects of canard-leading edge flap scheduling have been studied. In this study, corrected supersonic panel method has been used to predict the drag polar characteristics due to canard-leading edge flap deflections in the high speed regime. Utilizing the predicted drag polar curves, the canard-leading edge flap scheduling laws have been established. These scheduling laws are the relation of canard-leading edge flap deflections and the flight conditions to maximize the lift-drag ratio. Based on the results obtained from the canard-leading edge flap scheduling, the present method has shown to be useful to enhance the maneuverability of wing-body-canard type fighter class aircraft.

A Wind Tunnel Study on the Static Stability Characteristics of Light Sport Aircraft (스포츠급 경항공기의 정안정 특성 풍동시험 연구)

  • Kim, Jong-Bum;Jang, Young-Il;Kwon, Ky-Beom;Chung, Hyoung-Seog;Cho, Hwan-Kee;Kim, Sang-Ho;Lee, Jae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.8
    • /
    • pp.711-717
    • /
    • 2012
  • During the conceptual design phase of a light sport aircraft, the wind tunnel tests were conducted to investigate the static stability of newly-designed configuration. The 1/5 scale-down wind tunnel model consisted of fuselage, main wing, vertical tail and horizontal tail. The main wing and tails were able to be attached or detached from the fuselage. The aerodynamic forces and moments acting on the 6 different configurations compounding each component were measured by using the internal balance system and their static stability derivatives were derived. With these experimental data, the baseline lift and drag characteristics as well as the effects of each component to the longitudinal, directional and lateral static stability were quantitatively analyzed.

Effects of Wing Twist on Longitudinal Stability of BWB UCAV (날개의 비틀림이 동체-날개 융합익형 무인전투기의 종안정성에 미치는 영향에 대한 연구)

  • Ban, Seokhyun;Lee, Jihyeong;Kim, Sangwook;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • Lambda wing type Unmanned Combat Aerial Vehicle(UCAV) which adopts Blended Wing Body(BWB) has relatively less drag and more stealth performance than conventional aircraft. However, Pitching moment is rapidly increased at a specific angle of attack affected by leading edge vortex due to leading edge sweep angle. Wind tunnel testing and numerical analysis were carried out with UCAV 1303 configuration on condition of 50 m/s of flow velocity, $-4^{\circ}{\sim}28^{\circ}$ of the range of angle-of-attack. The effect of wing twist for longitudinal stability at the various angles of attack was verified in this study. When negative twist is applied on the wing, Pitch-break was onset at higher angle of attack due to delayed flow separation on outboard of the wing. On the other hand, pitch-break was onset at lower angle of attack and lift-to-drag ratio was increased when positive twist is applied on the wing.

복합재료 선미익 항공기 날개 하중해석

  • Han, Chang-Hwan;Kim, Eung-Tai;Ahn, Seok-Min;Kim, Jin-Won
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.8-27
    • /
    • 2002
  • In this study, the load analysis of a composite canard aircraft is performed numerically. Excel visual basic program for PC is used to calculate aerodynamic coefficients, loads and moments etc.. The basic data required for the load analysis such as aircraft configuration and dimension, parts and its weight and coordinate etc. are obtained from Catia modeling, measurement or material density. Aircraft weight, center of gravity, inertia moment, structural design speeds, wing load distribution, forces and moments are evaluated by using these data. V-n diagram is also represented for selecting critical loads applied to the wing and fuselage. The V-n diagram is investigated to decide the flight envelope of canard aircraft for design speed VA, VC, VD and load factor +3.8G, -1.52G at maximum weight of 2,573 lbs and sea level. In the future, the results of the wing and fuselage load analysis is to represented by using selected critical loads.

  • PDF

An Experimental Study on High Angle of Attack Static Stability Analysis For the Aerodynamic Design of Canard Type High Maneuver Aircraft (카나드 형상 고시동 항공기 공력설계를 우한 높은 받음각 정적 안정성 분석 실험 연구)

  • Chung, In-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.575-580
    • /
    • 2007
  • During the conceptual design phase of a canard type high maneuverable aircraft, the low speed small scale wind tunnel test was conducted to investigate the high angle-of-attack static stability of the aircraft. In this study, 1/50th scale generic canard-body-wing model was used for the small scale wind tunnel test. For the analysis of static stability including high angle-of-attack nonlinear characteristics, the vertical tail effects were studied due to canard deflections. In addition, the nose chine effects were studied at high angle-of-attack. Based on the results obtained from the experimental study, the configuration change effects for canard type aircraft on high angle-of-attack static stability have been able to analyze.