• Title/Summary/Keyword: 난류 박리 유동

Search Result 101, Processing Time 0.027 seconds

Performance Characteristics Analysis of a Three Dimensional Asymmetric Pintle Nozzle Induced by Connection-Tube Angle and Pintle Stroke Position (비대칭 3차원 핀틀 노즐의 연결관 각도와 핀틀 위치에 대한 성능 특성 해석)

  • Lee, KangMin;Hong, JiSeok;Sung, Hong-Gye;Heo, Junyoung;Jin, Jungkun;Ha, DongSung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.383-387
    • /
    • 2017
  • A three dimensional numerical analysis has been conducted to analyze the effects of a pipe angle, connecting a combustion chamber and a pintle nozzle, and pintle position on pintle nozzle performance. The compressibility correction of $k-{\omega}$ SST turbulent model was implemented to precisely predict the characteristics of complex flow structures inside a supersonic pintle nozzle. Due to an 3-D asymmetric pintle nozzle configuration, complex helical flow streamlines and large flow separations were observed, which resulting in significant nozzle performance losses. As the angle of connection-tube decreases, the coefficient of performance increases and Since the flow structures are evidently changed to the pintle stroke position, the performance characteristics was analyzed.

  • PDF

A STUDY ON THE IMPROVEMENT OF κ-εTURBULENCE MODEL FOR PREDICTION OF THE RECIRCULATION FLOW (재순환유동 예측을 위한 κ-ε 난류모델 개선에 대한 연구)

  • Lee, Y.M.;Kim, C.W.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.12-24
    • /
    • 2016
  • The standard ${\kappa}-{\varepsilon}$ and realizable ${\kappa}-{\varepsilon}$ models are adopted to improve the prediction performance on the recirculating flow. In this paper, the backward facing step flows are used to assess the prediction performance of the recirculation zone. The model constants of turbulence model are obtained by the experimental results and they have a different value according to the flow. In the case of an isotropic flow situation, decaying of turbulent kinetic energy should follow a power law behavior. In accordance with the power law, the coefficients for the dissipation rate of turbulent kinetic energy are not universal. Also, the other coefficients as well as the dissipation coefficient are not constant. As a result, a suitable coefficients can be varied according to each of the flow. The changes of flow over the backward facing step in accordance with model constants of the ${\kappa}-{\varepsilon}$ models show that the reattachment length is dependent on the growth rate(${\lambda}$) and the ${\kappa}-{\varepsilon}$ models can be improved the prediction performance by changing the model constants about the recirculating flow. In addition, it was investigated for the curvature correction effect of the ${\kappa}-{\varepsilon}$ models in the recirculating flow. Overall, the curvature corrected ${\kappa}-{\varepsilon}$ models showed an excellent prediction performance.

Performance Evaluation of Stator-Rotor Cascade System Considering Flow Viscosity and Aeroelastic Deformation Effects (유동점성 및 공탄성 변형효과를 고려한 스테이터-로터 케스케이드 시스템의 성능평가)

  • Kim, Dong-Hyun;Kim, Yu-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.72-78
    • /
    • 2008
  • In this study, advanced (fluid-structure interaction (FSI)) analysis system has been developed in order to predict turbine cascade performance with blade deformation effect due to aerodynamic loads. Intereference effects due to the relative movement of the rotor cascade with respect to the stator cascade are also considered. Reynolds-averaged Navier-Stokes equations with one equation Spalart-Allmaras and two-equation k-ω SST turbulence models are solved to accurately predict fluid dynamic loads considering flow separation effects. A fully implicit time marching scheme based on the (coupled Newmark time-integration method) with high artificial damping is efficiently used to compute the complex fluid-structure interaction problem. Predicted aerodynamic performance considering structural deformation effect of the blade shows somewhat different results compared to the case of rigid blade model. Cascade performance evaluations for different elastic axis positions are importantly presented and its aeroelastic effects are investigated.

A Performance Characteristics of the Thruster Nozzle for Attitude Control of Space Vehicle According to Flight Altitude (우주비행체 자세제어용 추력기 노즐의 비행고도 변이별 추력성능 특성 해석)

  • Kam, Ho-Dong;Choi, Hyun-Ah;Kim, Jeong-Soo;Bae, Dae-Seok;Kim, In-Tae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.167-171
    • /
    • 2012
  • A computational analysis of nozzle flow is conducted to investigate effects of the flight altitude on thrust performance. Reynolds-averaged Navier-Stokes equation with k-${\omega}$ SST(Shear Stress Transport) turbulence model is employed to simulate the nozzle flow in various altitude conditions, where continuum mechanics is to be valid. Thrust performance of the nozzle is exceedingly poor upto 10 km of flight altitude because of the irreversible phenomena such as shock and/or flow separation occurring inside the nozzle, whereas it is restored to the nominal value as the altitude is attained higher than 30 km.

  • PDF

An Experimental Study of Flow Characteristics Past vortical wall with Bottom Gap (수직벽 하부에 있는 틈새 후방의 유동특성에 관한 실험적 연구)

  • Cho Dae-Hwan;Lee Gyoung-Woo;Oh Kyoung-Gun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.11a
    • /
    • pp.153-158
    • /
    • 2005
  • The turbulent shear flaw around a surface-mounted vertical wall was investigated using the two-frame PIV(CACTUS 3.1) system. From this study, it is revealed that at least 500 instantaneous velocity field data are required for ensemble average to get reliable turbulence statistics, but only 200 field data are sufficient for the time-averaged mean velocity information The flow has an unsteady recirculation region post vertical wall with bottom gap, followed by a slow relaxation to the fiat-plate boundary layer flow. The time-averaged reattachment length estimated from the streamline distribution is about x/H=3H. The large eddy structure in the separated shear layer seems to have signification influence on the development of the separated shear layer and the reattachment process.

  • PDF

A Non-linear Low-Reynolds-Number Heat Transfer Model for Turbulent Separated and Reattaching Flows (난류박리 및 재부착 유동에 대한 저레이놀즈수 비선형 열전달 모형의 개발)

  • Rhee, Gwang-Hoon;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.316-323
    • /
    • 2000
  • A nonlinear low-Reynolds-number heat transfer model is developed to predict turbulent flow and heat transfer in separated and reattaching flows. The $k-{\varepsilon}-f_{\mu}$ model of Park and Sung (1997) is extended to a nonlinear formulation, based on the nonlinear model of Gatski and Speziale (1993). The limiting near-wall behavior is resolved by solving the $f_{\mu}$ elliptic relaxation equation. An improved explicit algebraic heat transfer model is proposed, which is achieved by applying a matrix inversion. The scalar heat fluxes are not aligned with the mean temperature gradients in separated and reattaching flows; a full diffusivity tensor model is required. The near-wall asymptotic behavior is incorporated into the $f_{\lambda}$ function in conjunction with the $f_{\mu}$ elliptic relaxation equation. Predictions of the present model are cross-checked with existing measurements and DNS data. The model preformance is shown to be satisfactory.

COMPARISON OF TURBULENCE MODELS ON ANALYSIS OF AIRCRAFT CONFIGURATIONS AT TRANSONIC SPEED (천음속 영역에서 항공기 유동해석에 미치는 난류모델의 영향 비교)

  • Huh, J.;Lee, N.;Lee, S.;Kwak, E.
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.47-56
    • /
    • 2015
  • In this paper, we study the effect of various turbulence models by comparing the aerodynamic characteristics and the flow patterns computed for aircraft models. An in-house CFD solver, MSAPv, that solves the three dimensional RANS equations with the turbulence model equations is used. The turbulence models used in this study are the Spalart-Allmaras model, Menter's $k-{\omega}$ SST model, Coakley's $q-{\omega}$ model, and Huang and Coakley's $k-{\varepsilon}$ model. DLR-F6 WB and WBNP configurations are selected for the study. We concentrate on the separated flow pattern variations with the turbulence models at the wing-body junction and the wing-pylon junction as well as drag polar curves.

Numerical Analysis of Stall Characteristics for Turboprop Aircraft (터보프롭 항공기의 실속 특성 수치해석)

  • Park, Young Min;Chung, Jin Deog
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.65-72
    • /
    • 2012
  • Numerical simulations were performed to study the stall characteristics of turboprop aircraft. Stall characteristics were qualitatively investigated using the computational results of various configurations based on the combinations of propeller and high lift device. For the analysis of stall characteristics, three-dimensional Navier-Stokes solver with Spalart-Allmaras turbulence model was used and the relative motion between propeller and wing was simulated using sliding mesh technique. For the cruise configurations, major flow separation was occurred at the fuselage/wing fairing and the separation was reduced under propeller slipstream condition. For the high lift device configuration without propeller, major flow separation was occurred at the outboard side of nacelle. With rotating propeller, early stall onset due to low relative velocity and high effective angle of attack was observed on the outboard wing section. Regarding rotating direction of propeller, inboard-down direction was preferred due to the stall delay effect of propeller slipstream.

The Study of Turbulence Model of Low-Reynolds Number Flow (저 레이놀즈수 유동장에서의 난류모델에 관한 연구)

  • Yoo C.;Lee J. S.;Kim C.;Rho O. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.172-177
    • /
    • 2004
  • In the present work, we have interests on the modification of parallel implemented with MPI(Message Passing Interface) programming method, 3-Dimensional, unsteady, incompressible Navier-Stokes equation solver to analyze the low-Reynolds number flow In order to accurate calculation aerodynamic coefficients in low-Reynolds number flow field, we modified the two-equation turbulence model. This paper describes the development and validation of a new two-equation model for the prediction of flow transition. It is based on Mentor's low Reynolds $\kappa-\omega$ model with modifications to include Total Stresses Limitation (TSL) and Separation Transition Trigger (STT)

  • PDF

Drirect Numerical Simulation of Transitional Separated Flows Part I:Primary Instability (천이박리유동의 직접수치모사 Part I:주 불안정성)

  • Yang, Gyeong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.2965-2972
    • /
    • 1996
  • Transitional flow in an obstructed channel is investigated using numerical simulation. Two-dimensional thin obstacles are mounted symmetrically in the vertical direction and periodically in the streamwise direction. Flow separation occurs at the tip of the sharp obstacles. Depending on the Reynolds number, the flow undergoes Hopf bifurcation as the primary instability leading to a two-dimensional unsteady periodic solution. At higher Reynolds numbers, the unsteady solution exhibits a symmetry-breaking bifurcation which results in an unsteady asymmetric solution. The results are compared with experiments currently available, and show a good agreement.