• Title/Summary/Keyword: 난류 가진 제트

Search Result 9, Processing Time 0.019 seconds

Experimental investigation on the turbulent elliptic jets by using a 3-D LDV system (3-D LDV 시스템을 이용한 타원제트의 난류특성에 관한 연구)

  • 권영철;이상준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2160-2170
    • /
    • 1991
  • Three-dimensional turbulent structures in the near field of elliptic jet were experimentally investigated by using a three-color, three-component Laser Doppler Velocimeter. The Reynolds number based on the nozzle exit velocity and nozzle equivalent diameter(De) was about 4*10$^{4}$. The turbulent characteristics of a sharp-edged elliptic nozzle with aspect ratio of 2 were analyzed along major and minor axis at X/De=2,3,5,7 and along the centerline up to X/De=14. Quantities measured at each point with the 3-D LDV system were three orthogonal velocity components, turbulent intensity, skewness, flatness, and Reynolds shear stress. The nondimensional mean velocities coincided well with the Schlichting's empirical curve with going downstream. Elliptic jet of AR=2 had two switching points at about X/De=2 and 16. The turbulent intensity along the minor axis was distributed widely than that along the major axis. In the near field, X/De<5, the Reynolds shear stresses of the inner part of the elliptic jet had negative value, which indicated the enhancement of entrainment toward the inner part.

A Study on the Turbulence Enhancement of Jet Flow by the Ultrasonic Forcing in a Coaxial Circular Pipe (동심원관내에서 초음파가진에 의한 제트유동의 난류증진에 관한 연구)

  • Ju, E.S.;Lee, Y.H.;Song, M.G.;Lee, S.B.;Son, S.W.
    • Journal of Power System Engineering
    • /
    • v.5 no.3
    • /
    • pp.31-37
    • /
    • 2001
  • A study to obtain the enhancement of turbulence at low Reynolds number is carried out by adding ultrasonic force into the jet flow field of a coaxial circular pipe which can afford the sufficient data of flow characteristics with the shear flow and turbulence flow in spite of its simple shape. A coaxial circular flow field is made vertically in a large and transparent acryl tank. The time mean velocity vector, distribution, kinetic energy and turbulence intensity formed in the complex flow field of turbulence enhancement are investigated, observed and discussed at Reynolds number of 2,000, 3,000 and 5,000 by using PIV measurement, in results, the validity of ultrasonic to obtain the enhancement of turbulence is certified.

  • PDF

Suppression of Turbulence in a Circular Jet Using a Single Frequency Excitation (단일 주파수 가진을 이용한 원형 제트의 난류 억제)

  • Park Jeongyoung;Choi Haecheon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.241-244
    • /
    • 2002
  • Large eddy simulation of a circular jet at the Reynolds number of 10000 is performed to investigate turbulence suppression effect with single frequency excitation at the non-dimensional frequency of 0.017. Instantaneous flow fields show that, with excitation, naturally occurring energetic vortices are suppressed through earlier saturation and breakdown of the shear layer vortices into fine grained turbulence. Due to the excitation, the Reynolds stresses are larger for the excited case near the jet and turbulence suppression begins afterward. The Reynolds normal stresses show largest suppression in the shear layer near the jet and in the centerline further downstream, while the Reynolds shear stress shows largest suppression in the shear layer at all the downstream locations.

  • PDF

Dynamic characteristics analysis of forcing jet by Karhunen-Loeve transformation (Karhunen-Loeve 변환을 이용한 Forcing 제트의 동적 특성 해석)

  • Lee, Chan-Hui;Lee, Sang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.6
    • /
    • pp.758-772
    • /
    • 1997
  • The snapshot method is introduced to approximate the coherent structures of planar forcing jet flow. The numerical simulation of flow field is simulated by discrete vortex method. With snapshot method we could treat the data efficiently and approximate coherent structures inhered in the planer jet flow. By forcing the jet at a sufficient amplitude and at a well-chosen frequency, the paring can be controlled in the region of the jet. Finally we expressed the underlying coherent structures of planar jet flow in the minimum number of modes by Karhunen-Loeve transformation in order to understand jet flow and to make the information storage and management in computers easier.

Effects of Multi-hole Baffle Thickness on Flow and Mixing Characteristics of Micro Combustor (다공배플 두께가 마이크로 연소기의 유동 및 혼합특성에 미치는 영향)

  • Kim, Won Hyun;Park, Tae Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.9
    • /
    • pp.623-629
    • /
    • 2017
  • Flow structure and mixing characteristics in a micro combustor with a multi-hole baffle were numerically studied using the Reynolds stress model. The multi-hole baffle has geometrical features to produce multiple three-dimensional vortices inside combustion chamber. When the thickness of the baffle's geometrical factors changes, variations of vortical structures occur variously. Among these vortices, the vortex generated from the fuel stream exerts a critical influence on the mixing enhancement. The three-dimensional vortical structure, in its development state, was strongly dependent on the baffle thickness. In particular, as the baffle thickness decreases to values less than the diameter of the fuel hole, the jet stream in baffle holes changes from the parabolic to saddleback profile type. The sizes of recirculation zones inside combustion chamber and the mixing state were closely affected by the structure of the jet streams.

Study of the Slot Film Cooling under Ramjet Combustor with Recirculation Zone (재순환 영역이 존재하는 램제트 연소실 슬롯 막냉각 연구)

  • Oh Min-Geun;Park Kwang-Hoon;Byun Hae-Won;Yu Man-Sun;Cho Hyung-Hee;Ham Hee-Cheol;Bae Joo-Chan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.59-63
    • /
    • 2005
  • The experimental study has been conducted to investigate the effect of the recirculation zone on the multi-slot film cooling in the ramjet combustor. The recirculation zone which is generated by the protrusion tip on the entrance of the coolant flow path affects on the first slot. Velocity fields, dimensionless temperature fields and adiabatic film cooling effectiveness on the downstream wall of the slot exit are measured. The results show that the film cooling performance is rapidly decreased after the slot exit by the share layer and high turbulence intensity between separated flows and coolant flows.

  • PDF

Numerical Investigation on the Mechanism of Mode Transition in Axi-symmetric Supersonic Jet Screech (축대칭 초음속 제트에서 스크리치 모드 전이현상의 수치적 연구)

  • Bin, Jong-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.790-797
    • /
    • 2010
  • Mode transition of the axi-symmetric screech tone in the low supersonic Mach number range from 1.0 to 1.20 is numerically analyzed. The axi-symmetric Navier-Stokes equations and the k-e turbulence model are solved in the cylindrical coordinate system. The dispersion-relation-preserving(DRP) scheme is applied for space discretization and the optimized four levels marching method are used for time integration. At low supersonic Mach numbers with an axi-symmetric A1 mode in the simulation, it is shown that acoustic propagation due to the nonlinear effects is seen in the lateral direction and the screech tone frequency is the same as the vortex passing frequency due to the generation of intense large-scale vortical motions.

Effect of Damkohler Number on Vortex-Heat Release Interaction in a Dump Combustor (덤프 연소기내의 와류-열방출의 관계에 대한 Damkohler 수의 영향)

  • Yu Kenneth H;Yoon Youngbin;Ahn Kyubok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.137-140
    • /
    • 2004
  • Oscillating heat release associated with periodic vortex-flame interaction was investigated experimentally. Turbulent jet flames were stabilized with recirculating hot products in a dump combustor, and large-scale periodic vortices were imposed into the jet flame by acoustic forcing. Forcing frequencies and operating parameters were adjusted to simulate unstable combustor operation in practical combustors. The objectives were to characterize vortex-heat release interaction that leads to unwanted heat release fluctuations and to identify the proper fuel injection pattern that could be used for actively suppressing such fluctuations. Phase-resolved CH* chemiluminescence and schlieren images were used as diagnostic tools. The results were compared at corresponding phases of vortex shedding cycle.

  • PDF

Application of turbulent model to characteristics of heat transfer in impinging jet flow with pulsed inlet (입구유동 가진이 있는 충돌제트 유동의 유동 및 열전달 변화에 대한 난류모델 적용)

  • Kwon, Dong-Ho;Kim, Hee-Yougn;Park, Tae-Seon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.593-596
    • /
    • 2008
  • Because of good performance of heat transfer characteristics, impinging jets are widely used in many industries for cooling or heating. And the present num erical studies attempt to show the effects of impinging jet. This paper considers the application of the turbulent models to impinging jet flow with pulsed inlet. It is assumed two-dimensional turbulent flows. The jet Reynolds num ber is set at 23,000 and the distance from the exit of the nozzle to the plate is 3 times larger than the diam eter of the nozzle. The influence of the Strouhal num ber(pulsation frequency) on Nusselt number at the impinging region is investigated. Strouhal numbers are ranged 0.0 to 0.5 and the forcing amplitudes are 1%,5%,9% of mean inlet velocity. In this study, the Nusselt number at the impinging region is sensitive to the pulsation frequency. Heat transfer coefficient strongly increase at Strouhal num ber of 0.4.

  • PDF