• 제목/요약/키워드: 난류응집구조

검색결과 21건 처리시간 0.017초

난류 파이프 유동 내 응집 구조의 횡 방향 성장 (Spanwise growth of coherent structures in turbulent pipe flow)

  • 안준선;이진영;황진율
    • 한국가시화정보학회지
    • /
    • 제19권2호
    • /
    • pp.26-31
    • /
    • 2021
  • The spanwise growth of turbulence structures in turbulent pipe flow was investigated using the direct numerical simulation data of Re𝜏 = 544, 934 and 3008. Two-point correlations and pre-multiplied energy spectra of streamwise velocity fluctuations were examined along the spanwise direction. The arclength direction is defined as r𝛳, which is useful for an analogy with the spanwise direction for channels or boundary layers; here, r and 𝛳 are the radial distance from the core and the azimuthal angles, respectively. Both analyses showed that the arclength scales increased with increasing the wall-normal distance. It showed that the coherent structures were confined in the core region due to the crowding effect of a circular pipe geometry. The pipe flow simulation could describe a realistic geometrical flow along the azimuthal direction, unlike the simulations of turbulent channel or boundary layer flow using periodic boundary conditions along the spanwise direction. The present results provided the spanwise organization of energy-containing motions over a broad range of scales in turbulent pipe flow.

표면 형상 변화에 따른 난류경계층 유동장 분석 (Transition of Turbulent Boundary Layer with a Step Change from Smooth to Rough Surface)

  • 이재화
    • 한국가시화정보학회지
    • /
    • 제12권3호
    • /
    • pp.15-20
    • /
    • 2014
  • Direct numerical simulation (DNS) dataset of a turbulent boundary layer (TBL) with a step change from smooth to rough surface is analyzed to examine spatially developing flow characteristics. The roughness elements are periodically arranged two-dimensional (2-D) spanwise rods with a streamwise pitch of ${\lambda}=8k$ ($=12{\theta}_{in}$), and the roughness height is $k=15{\theta}_{in}$, where ${\theta}_{in}$ is the inlet momentum thickness. The step change is introduced $80{\theta}_{in}$ downstream from the inlet. For the first time, full images from the DNS data with the step change from the smooth to rough walls is present to get some idea of the geometry of turbulent coherent structures over rough wall, especially focusing on their existence and partial dynamics over the rough wall. The results show predominance of hairpin vortices over the rough wall and their spanwise scale growth mechanism by merging.

정지 및 회전하는 원주에 의한 난류후류의 응집구조 (An Investigation of the Coherent Structures in Turbulent Wake Past a Stationary and Rotating Cylinder)

  • 부정숙;이종춘
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1310-1321
    • /
    • 1994
  • Turbulent coherent structures in the intermediate wake of a stationary and rotating cylinder, spin rate S=0.7, situated in a uniform were experimentally investigated using a conditionalphase average technique. Measurements were carried out at a section of 8.5 diameters downstream form the center of cylinder and a Reynolds number of $Re=6.5{\times}10^{3}.$/TEX> The phase averaged velocity and velocity vector fields, contours of vorticity, turbulent intermittency function and velocity fluctuation energy are presented and discussed in relation to the large scale coherent structures by Karman vortices that shed periodically from the cylinder. Coherent wake structures of the rotating cylinder is almost identical with stationary cylinder, but the lateral displacement and shrinkage of turbulent wake region is occured by rotation. Rotation of the cylinder result in that the deflection of wake center to deceleration region(Y/D${\simeq}-0.3)$ and the decrease of mean velocity defect(10%), vorticity strength of large scale structures(19%), total velocity fluctuation energy(12%).

비정상 후류가 난류박리기포의 응집구조에 미치는 영향 (Large-Scale Vortical Structure of Turbulent Separation Bubble Affected by Unsteady Wake)

  • 전세종;성형진
    • 대한기계학회논문집B
    • /
    • 제26권9호
    • /
    • pp.1218-1225
    • /
    • 2002
  • Large-scale vortical structure of a turbulent separation bubble affected by unsteady wake is essential to understand flow mechanisms in various fluid devices. A spoked-wheel type of wake generator provides unsteady wake, which modifies the turbulent separation bubble significantly by changing rotation directions and passing frequencies. A detailed mechanism of vortex shedding from the separation bubble with unsteady wake is analyzed by taking a conditional average with spatial box filtering, which spatially integrates measured signals at pre-determined wavelength. A convecting nature of the large-scale vortical structure is analyzed carefully. Spatial evolution of the large-scale vortical structure with frequency variance is also exemplified.

적합직교분해(POD)기법을 사용한 난류 응집구조 거동에 관한 연구 (A Study on the Effect of Large Coherent Structures to the Skin Friction by POD Analysis)

  • 신성윤;정광효;강용덕;서성부;김진;안남현
    • 대한조선학회논문집
    • /
    • 제54권5호
    • /
    • pp.406-414
    • /
    • 2017
  • An experimental study in a recirculating water channel was carried out to investigate the effect of large coherent structures to the skin friction on a flat plate. Particle Image Velocimetry (PIV) technique was used to quantify characteristic features of coherent structures growing to the boundary layer. In the PIV measurement, it is difficult to calculate the friction velocity near the wall region due to laser deflection and uncertainty so that Clauser fitting method at the logarithmic region was adopted to compute the friction velocity and compared with the one directly measured by the dynamometer. With changing the free-stream velocity from 0.5 m/s to 1.0 m/s, the activity of coherent structures in the logarithmic region was increased over three times in terms of Reynolds stress. The flow field was separated by Variable Interval Time Averaging (VITA) technique into the weak and the strong structure case depending on the existence large coherent structures in order to validate its effectiveness. The stream-wise velocity fluctuation was scanned through at the boundary thickness whether it had a large deviation from background flow. With coherent structures connected from near-wall to the boundary layer, mean wall shear stress was higher than that of weak structure case. Proper Orthogonal Decomposition (POD) analysis was also applied to compare the energy budget between them at each free-stream velocity.

Tripping wire가 부착된 회전원주에 의한 난류휴류의 응집구조 (Coherent Structures of Turbulent Wake Past a Rotating Circular Cylinder with a Tripping Wire)

  • 부정숙;이종춘
    • 대한기계학회논문집
    • /
    • 제19권8호
    • /
    • pp.1927-1939
    • /
    • 1995
  • An experimental investigation is conducted to find out the large scale coherent structures in the intermediate wake past a rotating cylinder with a single tripping wire attached. Relation between the vortex shedding frequency and the spin rate of rotating cylinder and the effects of the tripping wire on the flow characteristics were studied by using spectral analysis and conditional phase average technique, respectively. It is found that the vortex shedding frequency is bound to a certain range and varies regularly as spin rate increases. The coherent structures are compared with those of the plain rotating cylinder in the case of spin rate of 1.0. Distance between the upper and lower center of vortices increase and the vortex shedding time is delayed, the velocity fluctuation energy decreases near the center line of vortices and it spreads out to the outer region. The Reynolds shear stress increases highly in the upper region and the turbulent wake width expands with strong entrainment process.

Karhunen-Loeve 변환을 이용한 Forcing 제트의 동적 특성 해석 (Dynamic characteristics analysis of forcing jet by Karhunen-Loeve transformation)

  • 이찬희;이상환
    • 대한기계학회논문집B
    • /
    • 제21권6호
    • /
    • pp.758-772
    • /
    • 1997
  • The snapshot method is introduced to approximate the coherent structures of planar forcing jet flow. The numerical simulation of flow field is simulated by discrete vortex method. With snapshot method we could treat the data efficiently and approximate coherent structures inhered in the planer jet flow. By forcing the jet at a sufficient amplitude and at a well-chosen frequency, the paring can be controlled in the region of the jet. Finally we expressed the underlying coherent structures of planar jet flow in the minimum number of modes by Karhunen-Loeve transformation in order to understand jet flow and to make the information storage and management in computers easier.

후향계단 난류 박리재부착 유동에서의 대형와의 구조 (Large-Scale Vertical Structure in Separated and Reattaching Turbulent flow over a Backward Facing Step)

  • 안승광;이인원;성형진
    • 대한기계학회논문집B
    • /
    • 제26권12호
    • /
    • pp.1674-1680
    • /
    • 2002
  • An experimental study was made of a large-scale vortical structure over a backward-facing step. The Reynolds number based on the step height was R $e_{H}$ =33,000. To recognize the large-scale vortex, three components of velocity were measured. The measurements were performed in the recirculation zone (x/H=4.0) and the reattachment zone(x/H=7.5). To measure the wall pressure fluctuations in a turbulent flow over a backward-facing step, a 32-channel microphone array was installed beneath the wall in the streamwise and spanwise directions. From the measured pressure field, the size of large-scale vortex was obtained. As a detailed study, a conditionally-averaging technique was employed to characterize the coherent structure of the large-scale vortex. To see the relationship between the flow field and the relevant spatial mode of the pressure field, the spatial box filtering (SBF) was examined. A cross-correlation between velocity and pressure fluctuations was performed to identify the structure and the length scale of the large-scale vortex.x.

열성층유동장에 놓인 원주후류의 특성에 대한 연구 (4) -가열량의 변화에 따른 원주후류에 대하여- (A Study on the Characteristics of Cylinder Wake Placed in Thermally Stratified Flow (IV) -On the Cylinder Wake with Various Heating Rates-)

  • 김경천;정양범
    • 대한기계학회논문집
    • /
    • 제19권5호
    • /
    • pp.1340-1350
    • /
    • 1995
  • The effects of thermal stratification on the flow past a heated circular cylinder with various heating rates were examined in a wind tunnel. Turbulent intensities, r.m.s.values of temperature and turbulent convective heat flux distributions in the cylinder wakes with and without thermal stratification were measured by using a hot-wire and cold-wire combination probe. The phase averaging method was also used to estimate coherent contributions to the turbulent flow field in the near wake. The results show that the scalar mixing process is very different according to the mean temperature fields especially in the upper part of the wake. The coherent structure of the temperature field makes a large contribution to the time mean value like velocity components. However, the coherency of the temperature fluctuation is very different with the change of mean temperature fields, though the velocity coherent motions are quite similar in all experimental conditions.

이산 웨이블릿 변환을 이용한 3차원 난류 채널 유동에 관한 연구 (A Study of 3-Dimensional Turbulent Channel Flow Using Discrete Wavelet Transform)

  • 김강식;이상환
    • 대한기계학회논문집B
    • /
    • 제29권3호
    • /
    • pp.314-321
    • /
    • 2005
  • Discrete Wavelet Transform (DWT) has been applied to the Direct Numerical Simulation (DNS) data of turbulent channel flow. DWT splits the turbulent flow into two orthogonal parts, one corresponding to coherent structures and the other to incoherent background flow. The coherent structure is extracted from not vorticity field but velocity's since the channel flow is not isoropic. By comparing DWT's result of channel flow with that of isotropic flow, it is shown that coherent structure maintains the properties of original channel flow. The velocity field of coherent structures can be represented by few wavelet modes and that these modes are sufficient to reproduce the velocity probability density function (PDF) and the energy spectrum over the entire inertial range. The remaining incoherent background flow is homogeneous, has small amplitude, and is uncorrelated. These results are compared with those obtained for the same compression rate using large eddy simulation (LES) filtering. In contrast to the incoherent background flow of DWT, the LES subgrid scales have a much larger amplitude and are correlated, which makes their statistical modeling more difficult.