• Title/Summary/Keyword: 난류유동해석

Search Result 843, Processing Time 0.026 seconds

Numerical Study on Turbulent Flow in a Conical Diffuser (원추형 디퓨져 내의 난류운동에 관한 수치해석적 연구)

  • 강신형;최영석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1971-1978
    • /
    • 1992
  • A turbulent flow in a conical diffuser with total divergence angle of 8.deg. was numerically studied. The low Reynolds number k-.epsilon. model(Launder-Sharma model) was adopted to simulate the turbulence. The continuity and time averaged Navier-Stokes equations in a nonorthogonal coordinate system were solved by a finite volume method based on the fully elliptic formulation. The low Reynolds number k-.epsilon. model reasonably simulates the pressure recovery and the mean velocity components. However, there are also considerable discrepancies between predicted and measured shear stress distribution on the wall and turbulent kinetic energy distributions. It is necessary to investigate the flow structure at the entry of the diffuser, numerically as well as experimentally.

Calculation of Two-Phase Turbulent Jet with a Two-Equation Model (2-方程式 모델 에 의한 二相亂流 제트流動 의 數値解析)

  • 양선규;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.6
    • /
    • pp.714-724
    • /
    • 1985
  • Two-phase(air-solid, air-liquid droplet) turbulent round jet has been analyzed numerically using two equation turbulence model. The mean motion of suspending particles in air has been treated as the secondary fluid with virtual density and eddy viscosity. In this paper, the local mean velocity of secondary fluid is not assumed to be the same as that of the primary one. Dissipation rate of turbulent kinetic energy which arises because the particles can not catch up with the turbulent fluctuations of the primary fluid has been modelled by using the concept of Kolmogorov's spectral energy transfer. Numerical computations were performed for flows with different volume fraction of the dispersed phase and the diameter of particle. Results show that the total rate of turbulent energy dissipation, turbulent intensities and spreading rate of jets are reduced by the increase of volume fraction of dispersed phase. However it does not show consistent tendency with increasing the particle diameter. This investigation also shows that presence of particles in the fluid modifies the structure of the primary fluid flow significantly. Predicted velocity profiles and turbulence properties qualitatively agree with available data.

Large Eddy Simulation and Parametric Study of Turbulent Flow Characteristics in the Internal Combustion Chamber using SGS Model (연소실 내 난류유동장 특성에 대한 아격자 모델을 사용한 LES 모사 및 관련인자 영향 평가)

  • Nam, Seung Man;Lee, Kye Bock
    • Journal of Energy Engineering
    • /
    • v.21 no.3
    • /
    • pp.228-236
    • /
    • 2012
  • Large eddy simulation (LES) is increasingly used as a tool for studying the dynamics of turbulence in combustion chamber flows due to the promise of wider generality and more accurate results compared to Reynolds averaged Navier-Stokes(RANS) models. This study presents the appropriate subgrid-scale(SGS) model in LES for predicting the turbulent flow field in the internal combustion engine. The study of the effects of model and numerical parameters such as discretization scheme, initial condition, time step and SGS model was performed. The results of LES using the SGS model were found to be in the good agreement with experimental data.

Large Eddy Simulation of Turbulent Flows over Backward-facing Steps (후향 계단에서 난류 유동에 대한 대와동모사)

  • Hwang, Cheol-Hong;Kum, Sung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.3
    • /
    • pp.507-514
    • /
    • 2009
  • Large eddy simulation code was developed to predict the turbulent flows over backward-facing steps including a recirculating flow phenomena. Localized dynamic ksgs-equation model was employed as a LES subgrid model and the LES solver was implemented on parallel computer consisting of 16 processors to reduce computational costs. The results of laminar flow showed qualitative and quantitative agreements between current simulations and experimental results availablein literatures. The simulation of the turbulent flows also yielded reasonable results. From these results, it can be expected that developed LES code will be very useful to analyze the combustion in stabilities and noise of a practical combustor in the future.

Analysis of the Flow-Induced Stress Waves in Lavered Structures (적층구조물내의 유체유발 탄성응력파 해석)

  • 이준근;이우식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.328-333
    • /
    • 1995
  • 본 연구에서는 난류경계층 압력유동을 받는 구조물의 탄성응력파의 전파특성을 파동역할을 이용하여 해석하였다. 기존의 연구에서는 직각좌표계를 이용하여 난류운동이 동일한 한 방향으로 흐르는 경우에 대해 탄성응력파의 전파특성을 해석하였으나, 본 연구에서는 유체가 구조물의 표면에 수직으로 입사하여 방사형으로 흘러나갈 경우에 발생하는 탄성응력파의 전파 특성을 극좌표계를 이용하여 해석하였다. 또한 기초 구조물의 깊이방향으로 전파되는 탄성응력파를 감소시키기 위해 기초구조물의 표면에 접착시키는 탄성중합체층을 설계하는데 보다 효율적으로 응용할 수 있는 단순화된 1자유도계 모델을 유도하였다.

  • PDF

Numerical analysis of turbulent flows in the helically coiled pipes of heat transfer (열교환기의 나선형 관내 난류유동 수치해석)

  • Kwag, Seung-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.905-910
    • /
    • 2013
  • The flow analysis has been made by applying the turbulent models in the helically coiled tubes of heat transfer. The k-${\varepsilon}$ and Spalart-Allmaras turbulent models are used in which the structured grid is applied for the simulation. The velocity vector, the pressure contour, the change of residuals along the iteration number and the friction factors are simulated by solving the Navier-Stokes equations to make clear the Reynolds number effect. The helical tube increases the centrifugal forces by which the wall shear stress become larger on the outer side of the tube. The centrifugal force makes the heat transfer rate locally larger due to the increase of the flow energy, which finds out the close relationship between the pressure drop and friction factor in the internal flow. The present numerical results are compared with others, for example, in the value of friction factor for validation.

Prediction of Turbulent Boundary Layers on Convex Surfaces with Reynolds Stress Closure Model (레이놀즈응력모델을 사용한 곡면상의 난류경계층에 대한 수치해석)

  • 김광용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1717-1726
    • /
    • 1991
  • 본 연구에서는 낮은 레이놀즈수 영역에도 적용될 수 있는 레이놀즈응력모델의 개발을 위해, 우선 벽근처 영역에서 사용되는 실험식(벽법칙)을 Hassid와 Poreh에 의 해 개발된 1-방정식모델로 대체하고 이를 레이놀즈응력모델과 접속시키는 방식을 사용 하였다. Hassid-Poreh의 1-방정식모델은 이미 Gibson등에 의해 그 성능이 평가되어 압력구배가 크지 않은 경계층유동의 낮은 레이놀즈수 영역에서 매우 좋은 결과를 보여 줌이 밝혀졌다. 본 연구에서는 곡면위의 난류경계층에 대해 위에서 설명한 바 있는 난류모델을 적용함에 있어 Gillis등과 Gibson등에 의해 실험된, 각각 곡률이 큰 경우 와 작은 경우의 대표적인 유동을 선택하여 모델의 성능을 시험하였다. 1-방정식모델 내에 포함된 길이차원(length scale)에 대해서는 곡률을 고려한 수정이 이루어졌다.

Simulation of Turbulent Flow in a Square Duct with Nonlinear k-$\varepsilon$ Models (비선형 k-$\varepsilon$ 난류모델에 따른 정사각형 덕트내 난류유동 수치해석(8권1호 게재논문중 그림정정))

  • Myong Hyon Kook
    • Journal of computational fluids engineering
    • /
    • v.8 no.2
    • /
    • pp.57-63
    • /
    • 2003
  • Two nonlinear κ-ε models with the wall function method are applied to the fully developed turbulent flow in a square duct. Typical predicted quantities such as axial and secondary velocities, turbulent kinetic energy and Reynolds stresses are compared in details both qualitatively and quantitatively with each other. A nonlinear κ-ε model with the wall function method capable of predicting accurately duct flows involving turbulence-driven secondary motion is presented in the present paper. The nonlinear κ-ε model of Shih et al.[1] adopted in a commercial code is found to be unable to predict accurately duct flows with the prediction level of secondary flows one order less than that of the experiment.

Simulation of Turbulent Flow in a Triangular Subchannel of a Bare Rod Bundle with Nonlinear k-$\varepsilon$ Models (비선형 k-$\varepsilon$ 난류모델에 의한 봉다발의 삼각형 부수로내 난류유동 수치해석)

  • Myong Hyon Kook
    • Journal of computational fluids engineering
    • /
    • v.8 no.2
    • /
    • pp.8-15
    • /
    • 2003
  • Three nonlinear κ-ε models with the wall function method are applied to the fully developed turbulent flow in a triangular subchannel of a bare rod bundle. Typical predicted quantities such as axial and secondary velocities, turbulent kinetic energy and wall shear stress are compared in details both qualitatively and quantitatively with both each other and experimental data. The nonlinear κ-ε models by Speziale[1] and Myong and Kasagi[2] are found to be capable of predicting accurately noncircular duct flows involving turbulence-driven secondary motion. The nonlinear κ-ε model by Shih et aL.[3] adopted in a commercial code is found to be unable to predict accurately noncircular flows with the prediction level of secondary flows one order less than that of the experiment.