• Title/Summary/Keyword: 낙상감지시스템

Search Result 39, Processing Time 0.031 seconds

Development of Falling-sensing Terminals and a System with Relay Function (중계 기능을 갖는 낙상 감지 단말기 및 시스템의 개발)

  • Jang, Duk-Sung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.3
    • /
    • pp.173-181
    • /
    • 2016
  • Several falling-sensing terminals have been developed which are able to detect the fall/upset accident of the elderly and transmit the collapsing signals to the administrative server via RF communication using 400MHz bandwidth. Supposing there might be no communication problem within a sanatorium, just single terminal without relay function had been made as a prototype in the first stage of development. However some communication problems have discovered at the coner of the floor apart from the other floor diagonally in the same building. Same kind of problems have been happened in the area behind a steel fence or a car. To solve these kinds of communication problems, we have developed several terminals and added up relay function to them. In this paper we represented that the success ratio of the communication has been improved by using relay function among several terminals.

A study on sidewalk damage warning system for wheelchair users (휠체어 사용자를 위한 보도파손 경고시스템에 관한 연구)

  • Hyeon-Jeowo Jo;Su-Jeong Kim;Su-Hyun Park;Ji-Won Park;Dong-Young Yoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.51-52
    • /
    • 2024
  • 본 논문에서는 고령 휠체어 사용자를 대상으로 능동적인 이동을 위한 보도 탐지와 낙상 사고 감지의 기능을 담은 어플리케이션을 제안하고자 한다. 보도 파손 데이터를 담은 데이터베이스 지도를 형성함으로써, 다른 사용자의 2차 사고 방지도 예방할 수 있을 것이다.

Development of the Activity Posture Classifier for Ubiquitous Health Care (유비쿼터스 헬스케어를 위한 활동상태 분류기 개발)

  • Kim, Se-Jin;Chung, Wan-Young;Jeong, Do-Un
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.703-706
    • /
    • 2007
  • The real-time monitoring about the activity of the human provides useful information about the activity quantity and an ability. This study developed a system for human physical activity assessment in ambulatory monitoring using portable sensing device combining a tri-axial accelerometer and wireless sensor node. This real-time system is able to identify several postures, posture transitions and movements with classification algorithm. In addition, this system also features fall detection capability. The results of the assessment for evaluating the performance of the system show high identification accuracy.

  • PDF

The Study of Realtime Fall Detection System with Accelerometer and Tilt Sensor (가속도센서와 기울기센서를 이용한 실시간 낙상 감지 시스템에 관한 연구)

  • Kim, Seong-Hyun;Park, Jin;Kim, Dong-Wook;Kim, Nam-Gyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.11
    • /
    • pp.1330-1338
    • /
    • 2011
  • Social activities of the elderly have been increasing as our society progresses toward an aging society. As their activities increase, so does the occurrence of falls that could lead to fractures. Falls are serious health hazards to the elderly. Therefore, development of a device that can detect fall accidents and prevent fracture is essential. In this study, we developed a portable fall detection system for the fracture prevention system of the elderly. The device is intended to detect a fall and activate a second device such as an air bag deployment system that can prevent fracture. The fall detection device contains a 3-axis acceleration sensor and two 2-axis tilt sensors. We measured acceleration and tilt angle of body during fall and activities of daily(ADL) living using the fall detection device that is attached on the subjects'. Moving mattress which is actuated by a pneumatic system was used in fall experiments and it could provide forced falls. Sensor data during fall and ADL were sent to computer and filtered with low-pass filter. The developed fall detection device was successful in detecting a fall about 0.1 second before a severe impact to occur and detecting the direction of the fall to provide enough time and information for the fracture preventive device to be activated. The fall detection device was also able to differentiate fall from ADL such as walking, sitting down, standing up, lying down, and running.

Work Environment Monitoring of Workers Using Wearable Sensor and Helmet (착용형 센서와 헬멧을 이용한 작업자의 작업환경 모니터링)

  • Gu, Ye-Jin;Kim, Jong-Jin;Chung, Wan-Young
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.2
    • /
    • pp.91-98
    • /
    • 2019
  • Accidents of worker that occur in isolated places are difficult to rescue, unlike general construction accidents. There is a problem of communication limitation when an accident occurs in an isolated place. Also, it is difficult to search the accident place due to the absence of CCTV. In order to solve these problems, this paper proposes a device that combines IoT technology with a safety helmet, which must be worn in the workplace. The proposed device additionally designs and implements a real-time PPG(Photoplethysmography) sensor, body temperature sensor, accelerometer sensor and a camera sensor on the helmet. The proposed helmet system allows the user and the control center to monitor the state of the worker. In addition, when an abnormal biological signal or fall occurs to the worker, the image is transmitted to the control center. By using the proposed system, it is possible to check the status of the worker in real time, so that it has an advantage that it can cope with the accident quickly.

Implementation of an alarm system with AI image processing to detect whether a helmet is worn or not and a fall accident (헬멧 착용 여부 및 쓰러짐 사고 감지를 위한 AI 영상처리와 알람 시스템의 구현)

  • Yong-Hwa Jo;Hyuek-Jae Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.3
    • /
    • pp.150-159
    • /
    • 2022
  • This paper presents an implementation of detecting whether a helmet is worn and there is a fall accident through individual image analysis in real-time from extracting the image objects of several workers active in the industrial field. In order to detect image objects of workers, YOLO, a deep learning-based computer vision model, was used, and for whether a helmet is worn or not, the extracted images with 5,000 different helmet learning data images were applied. For whether a fall accident occurred, the position of the head was checked using the Pose real-time body tracking algorithm of Mediapipe, and the movement speed was calculated to determine whether the person fell. In addition, to give reliability to the result of a falling accident, a method to infer the posture of an object by obtaining the size of YOLO's bounding box was proposed and implemented. Finally, Telegram API Bot and Firebase DB server were implemented for notification service to administrators.

A Study on Real-Time Sports Activity Classification & Monitoring Using a Tri-axial Accelerometer (가속도 센서를 이용한 실시간 스포츠 동작 분류.모니터링에 관한 연구)

  • Kang, Dong-Won;Choi, Jin-Seung;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.2
    • /
    • pp.59-64
    • /
    • 2008
  • D. W. KANG, J. S. CHOI, and G. R. TACK, A Study on Real-Time Sports Activity Classification & Monitoring Using a Tri-axial Accelerometer. Korean Jouranl of Sport Biomechanics, Vol. 18, No. 2, pp. 59-64, 2008. This study was conducted to study the real-time sports activity classification and monitoring using single waist mounted tri-axial accelerometer. This monitoring system detects events of sports activities such as walking, running, cycling, transitions between movements, resting and emergency event of falls. Accelerometer module was developed small and easily attachable on waist using wireless communication system which does not constrain sports activities. The sensor signal was transferred to PC and each movement pattern was classified using the developed algorithm in real-time environment. To evaluate proposed algorithm, experiment was performed with several sports activities such as walking, running, cycling movement for 100sec each and falls, transition movements(sit to stand, lie to stand, stand to sit, lie to sit, stand to lie and sit to lie) for 20 times each with 5 healthy subjects. The results showed that successful detection rate of the system for all activities was 95.4%. In this study, through sports activity monitoring. it was possible to classify accurate sports activities and to notify emergency event such as falls. For further study, the accurate energy consumption algorithm for each sports activity is under development.

Development of Personal Mobility Safety Driving Assistance System Using CNN-Based Object Detection and Boarding Detection Sensor (합성곱 신경망 기반 물체 인식과 탑승 감지 센서를 이용한 개인형 이동수단 주행 안전 보조 시스템 개발)

  • Son, Kwon Joong;Bae, Sung Hoon;Lee, Hyun June
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.211-218
    • /
    • 2021
  • A recent spread of personal mobility devices such as electric kickboards has brought about a rapid increase in accident cases. Such vehicles are susceptible to falling accidents due to their low dynamic stability and lack of outer protection chassis. This paper presents the development of an automatic emergency braking system and a safe starting system as driving assistance devices for electric kickboards. The braking system employed artificial intelligence to detect nearby threaening objects. The starting system was developed to disable powder to the motor until when the driver's boarding is confirmed. This study is meaningful in that it proposes the convergence technology of advanced driver assistance systems specialized for personal mobility devices.

Secure Authentication Protocol based on a Chameleon Hash Function for Ambient Living Assisted-Systems (전천 후 생활보조 시스템을 위한 카멜레온 해시 함수 기반의 안전한 인증 프로토콜)

  • Yi, Myung-Kyu;Choi, Hyunchul;Whangbo, Taeg-Keun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.73-79
    • /
    • 2020
  • Due to the rapidly ageing population and low birth rates, most countries have faced with the problems of an ageing population. As a result, research into aging and the means to support an aging population has therefore become a priority for many governments around the world. Ambient Assisted Living(AAL) approach is the way to guarantee better life conditions for the aged and for monitoring their health conditions by the development of innovative technologies and services. AAL technologies can provide more safety for the elderly, offering emergency response mechanisms and fall detection solutions. Since the information transmitted in AAL systems is very personal, however, the security and privacy of such data are becoming important issues that must be dealt with. In this paper, we propose a Chameleon hash-based secure authentication protocol for AAL systems. The proposed authentication protocol not only supports several important security requirements needed by the AAL systems, but can also withstand various types of attacks. In addition, the security analysis results show that the proposed authentication protocol is more efficient and secure than the existing authentication protocols.