• Title/Summary/Keyword: 나노 코팅

Search Result 865, Processing Time 0.03 seconds

Development of High Performance Curing Agent and Effective Dispersion Method of Nanomaterials (고성능 피막양생제 개발 및 나노물질의 분산방안 평가)

  • Son, Ho-Jung;Yoo, Byung-Hyun;Lee, Dong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.230-236
    • /
    • 2019
  • Recently, issues related to the quality of concrete have continuously resulted in surface quality problems, such as the exfoliation of concrete surfaces due to the cost reduction of cement and poor quality fine aggregate, scaling of surfaces caused by laitance, and plastic shrinkage cracks. Prompted by social issues, the application of a photo catalyst to road structures is being attempted to solve the environmental problems caused by fine dust and automobile exhaust. In this study, chemical admixtures were developed to improve the surface quality of concrete and to apply and distribute titanium dioxide in nanoscale sizes to provide basic data for the development of a photocatalyst-curing agent. As a result of the experiment, silicon and silane were reviewed as a raw material as a curing agent to develop a high performance curing agent with better film performance than conventional curing agents because they could form a film quickly on a fresh concrete surface. The distributed stability of the ultrasonic disperser showed the best performance through an outdoor test for four weeks to review the dispersion measures for the application of nanomaterials.

Structural and Electrochemical characterization of LiCoO2 Nano Cathode Powder Fabricated by Mechanochemical Process (기계 화학법에 의해 제작된 나노 LiCoO2 양극 분말의 구조 및 전기화학적 특성)

  • Choi, Sun-Hee;Kim, Joo-Sun;Yoon, Young-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.1
    • /
    • pp.86-91
    • /
    • 2004
  • $LiCoO_2$ cathode powders with round particle shaped and nano grain sized of 70-300nm were synthesized by a mechanochemical method. The surface of Li-Co precursor prepared by freeze drying method was modified by $K_2SO_4$ coating and ball milling was used for the coating process. The precursor was crystallized to high temperature form of $LiCoO_2$ at $800^{\circ}C$ and the grain growth was inhibited by the $K_2SO_4$ coating effect. The $K_2SO_4$ coating was not decomposed at $800^{\circ}C$ and prevented the contact in the Li-Co precursor particles. The nano-sized $LiCoO_2$ powder had tetragonal phase and it affected the Li diffusion through the surface of particles. It means that the anode materials for hight performance battery should be satisfied not only small particle size but phase contol on the surface of particles. In this study, the powder characteristics and rate capabilities were compared with a commercial powder and the nano-sized $LiCoO_2$ powder fabricated by the mechanochemical method. And the crucial factor which affects on battery performance was also examined.

A Research and Application of Polyhydroxyalkanoates in Biosensor Chip (생분해성 고분자, 폴리하이드록시알카노에이트를 이용한 바이오센서 칩 연구와 그 응용)

  • Park, T.J.;Lee, S.Y.
    • KSBB Journal
    • /
    • v.22 no.6
    • /
    • pp.371-377
    • /
    • 2007
  • Polyhydroxyalkanoates (PHAs) are a family of microbial polyesters that can be produced by fermentation from renewable resources. PHAs can be used as completely biodegradable plastics or elastomers. In this paper, novel applications of PHAs in biosensor are described. A general platform technology was developed by using the substrate binding domain (SBD) of PHA depolymerase as a fusion partner to immobilize proteins of interest on PHA surface. It could be shown that the proteins fused to the SBD of PHA depolymerase could be specifically immobilized onto PHA film, PHA microbead, and microcontact printed PHA surface. We review the results obtained for monitoring the specific interaction between the SBO and PHA by using enhanced green fluorescent protein, red fluorescent protein, single chain antibody against hepatitis B virus preS2 surface protein and severe acute respiratory syndrome coronavirus surface antigen as model proteins. Thus, this system can be efficiently used for studying protein-protein and possibly protein-biomolecule interactions for various biotechnological applications.

Room-temperature Bonding and Mechanical Characterization of Polymer Substrates using Microwave Heating of Carbon Nanotubes (CNT 마이크로파 가열을 이용한 고분자 기판의 상온 접합 및 기계적 특성평가)

  • Sohn, Minjeong;Kim, Min-Su;Ju, Byeong-Kwon;Lee, Tae-Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.89-94
    • /
    • 2021
  • The mechanical reliability of flexible devices has become a major concern on their commercialization, where the importance of reliable bonding is highlighted. In terms of component materials' properties, it is important to consider thermal damage of polymer substrates that occupy large area of the flexible device. Therefore, room temperature bonding process is highly advantageous for implementing flexible device assemblies with mechanical reliability. Conventional epoxy resins for the bonding still require curing at high temperatures. Even after the curing procedure, the bonding joint loses flexibility and exhibits poor fatigue durability. To solve this problems, low-temperature and adhesive-free bonding are required. In this work, we develop a room temperature bonding process for polymer substrates using carbon nanotube heated by microwave irradiations. After depositing multiple-wall carbon nanotubes (MWNTs) on PET polymer substrates, they are heated locally with by microwave while the entire bonding specimen maintains room temperature and the heating induces mechanical entanglement of CNT-PET. The room temperature bonding was conducted for a PET/CNT/PET specimen at 600 watt of microwave power for 10 seconds. Thickness of the CNT bonding joint was very thin that it obtains flexibility as well. In order to evaluate the mechanical reliability of the joint specimen, we performed lap shear test, three-point bending test, and dynamic bending test, and confirmed excellent joint strength, flexibility, and bending durability from each test.

Nanostructured PVdF-HFP/TiO2 Composite as Protective Layer on Lithium Metal Battery Anode with Enhanced Electrochemical Performance (PVdF-HFP/TiO2 나노복합체 보호층을 통한 리튬금속전지 음극의 전기화학적 성능 향상)

  • Lee, Sanghyun;Choi, Sang-Seok;Kim, Dong-Eun;Hyun, Jun-Heock;Park, Young-Wook;Yu, Jin-Seong;Jeon, So-Yoon;Park, Joongwon;Shin, Weon Ho;Sohn, Hiesang
    • Membrane Journal
    • /
    • v.31 no.6
    • /
    • pp.417-425
    • /
    • 2021
  • As the demand for high-capacity batteries increases, there has been growing researches on the lithium metal anode with a capacity (3,860 mAh/g) of higher than that of conventional one and a low electrochemical potential (-3.040 V). In this study, using the anatase phased TiO2 nanoparticles synthesized by hydrothermal synthesis, a PVdF-HFP/TiO2 organic/inorganic composite material was designed and used as an interfacial protective layer for a Li metal anode. As-formed organic/inorganic-lithium composite thin film was confirmed through the crystalline structure and morphological analyses. In addition, the electrochemical test (cycle stability and voltage profile) confirmed that the protective layer of PVdF-HFP/TiO2 composite (10 wt% TiO2 and 1.1 ㎛ film thickness) contributed to the enhanced electrochemical performance of the lithium metal anode (Colombic efficiency retention: 90% for 77 cycles). Based on comparative test with the untreated lithium electrode, it was confirmed that our protective layer plays an important role to stabilize/improve the EC performance of the lithium metal negative electrode.

Development of Metal Oxide-based Photocatalyst Coated on Activated Carbon for Removing Volatile Organic Compounds (휘발성 유기화합물 저감을 위한 금속산화물 기반 광촉매-활성탄 복합체 개발)

  • Jae-Rak, Ko;Yewon, Jang;Ho Young, Jun;Hwan-Jin, Bae;Ju-Hyun, Lee;Chang-Ho, Choi
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.285-292
    • /
    • 2022
  • Adsorption tower systems based on activated carbon adsorption towers have mainly been employed to reduce the emission of volatile organic compounds (VOCs), a major cause of air pollution. However, the activated carbon currently used in these systems has a short lifespan and thus requires frequent replacement. An approach to overcome this shortcoming could be to develop metal oxide photocatalysis-activated carbon composites capable of degrading VOCs by simultaneously utilizing photocatalytic activation and powerful adsorption by activated carbon. TiO2 has primarily been used as a metal oxide photocatalyst, but it has low economic efficiency due to its high cost. In this study, ZnO particles were synthesized as a photocatalyst due to their relatively low cost. Silver nanoparticles (Ag NPs) were deposited on the ZnO surface to compensate for the photocatalytic deactivation that arises from the wide band gap of ZnO. A microfluidic process was used to synthesize ZnO particles and Ag NPs in separate reactors and the solutions were continuously supplied with a pack bed reactor loaded with activated carbon powder. This microfluidic-assisted pack bed reactor efficiently prepared a Ag-ZnO-activated carbon composite for VOC removal. Analysis confirmed that Ag-ZnO photocatalytic particles were successfully deposited on the surface of the activated carbon. Conducting a toluene gasbag test and adsorption breakpoint test demonstrated that the composite had a more efficient removal performance than pure activated carbon. The process proposed in this study efficiently produces photocatalysis-activated carbon composites and may offer the potential for scalable production of VOC removal composites.

A Reaserch on the Performance Verification of Energy Storage Mortar Enhanced in Thermal Efficiency and Strength by Applying Microencapsulated Phase Change Materials and Nanomaterials (마이크로캡슐로 코팅한 상변화 물질과 나노소재를 적용한 고효율 열저장 시멘트 복합체 성능 검증 연구)

  • Ahn, Jun Hyuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.433-441
    • /
    • 2024
  • This study aims to prevent freezing of existing domestic buildings by developing an energy storage mortar with increased energy efficiency that can reduce the increase in carbon emissions and maintenance costs due to external energy use due to heat wires in civil engineering and buildings with embedded heat wires. I suggest. Research has focused on incorporating phase change materials (PCMs) into common cement composites to provide latent heat performance. However, concrete mixed with phase change materials shows problems such as leakage of phase change materials, decreased strength, and insufficient thermal performance. To overcome this problem, we encapsulate phase change materials using microcapsules and mix them into cement composites to minimize strength loss and leakage, and use multi-walled carbon nanotubes and silica fume to minimize the strength reduction of concrete. A heat storage cement composite was developed. When high-efficiency heat storage cement was used as a replacement for ordinary cement composite in an environment where heat wires were buried, the effect was shown to reduce energy by about 42 %, and compared to a cement composite containing only PCM, the compressive strength and bending strength were 18 % and 23 %, respectively. was improved and its effectiveness was proven.

Performance Evaluation of Fabric Sensors for Movement-monitoring Smart Clothing: Based on the Experiment on a Dummy (동작 모니터링 스마트 의류를 위한 직물 센서의 성능 평가: 더미 실험을 중심으로)

  • Cho, Hyun-Seung;Park, Sun-Hyeong;Kang, Da-Hye;Lee, Kang-Hwi;Kang, Seung-Jin;Han, Bo-Ram;Oh, Jung-Hoon;Lee, Hae-Dong;Lee, Joo-Hyeon;Lee, Jeong-Whan
    • Science of Emotion and Sensibility
    • /
    • v.18 no.4
    • /
    • pp.25-34
    • /
    • 2015
  • TThis study explored the requirement of fabric sensor that can measure the motion of the joint effectively by measuring and analyzing the variation in electric resistance of a sensor in accordance with bending and stretching motion of the arm by the implementation of a motion sensor utilizing conductive fabric. For this purpose, on both sides of two kinds of knitted fabric, namely 'L' fabric and 'W' fabric Single Wall Carbon Nano-Tube(SWCNT) was coated, fabric sensor was developed by finishing them in a variety of ways, and the sensor was attached to the arm band. The fabric sensor consisted of total 48 cases, namely background fabric for coating, the method of sensor attachment, the number of layer of sensors, the length of sensor, and the width of sensor. The performance of fabric motion sensors in terms of a dummy arm, that is, a Con-Trex MJ with 48 arm bands around it was evaluated. For each arm band, a total of 48, fastened around the dummy arm, it was adjusted to repeat the bending and stretching at the frequency : 0.5Hz, ROM : $20^{\circ}{\sim}120^{\circ}$, the voltage was recorded for each case after conducting three sets of repeat measurement for a total of 48 cases. As a result of the experiment, and as a consequences of the evaluation and analysis of the voltage based on the uniformity of the base line of the peak-to-peak voltage(Vp-p), the uniformity of Vp-p within the same set, and the uniformity of the Vp-p among three sets, the fabric sensors that have been configured in SWCNT coated 'L' fabric / welding / two layers / $50{\times}5mm$, $50{\times}10mm$, $100{\times}10mm$, and SWCNT coated 'W' fabric / welding / two layers / $50{\times}10mm$ exhibited the most uniform and stable signal value within 5% of the total variation rate. Through all these results of the experiment, it was confirmed that SWCNT coated fabric was suitable for a sensor that can measure the human limb operation when it was implemented as a fabric sensor in a variety of forms, and the optimal sensor types were identified.

Characteristics of Antibacterial Chlorhexidine-Containing Hydroxyapatite Coated on Titanium (타이타늄 상에 코팅된 클로르헥시딘 항균제를 함유한 수산화인회석의 특성)

  • Kim, Min-Hee;Hwang, Moon-Jin;Lee, Woon-Young;Park, Yeong-Joon;Song, Ho-Jun
    • Korean Journal of Dental Materials
    • /
    • v.44 no.3
    • /
    • pp.263-272
    • /
    • 2017
  • In this study, antibacterial chlorhexidine (CHX)-containing hydroxyapatite (HAp) was coated on titanium and investigated its characteristics. Ti-mSBF-CHX group was prepared by soaking titanium disks in the modified simulated body fluid (mSBF) mixed with CHX. Ti-mSBF group was coated using mSBF without CHX. Ti-mSBF-adCHX group was prepared by soaking Ti-mSBF specimen in CHX-containing solution. The crystallines clusters composed with nano-shaped crystallites were coated on the surface of the Ti-mSBF specimen. The ribbon-shaped crystallites were observed with the crystalline clusters on the Ti-mSBF-CHX specimen. The content of CHX chemical compositions was high in ribbon-shaped crystallites. HAp crystalline structure was dominant for all prepared specimens, and ${\beta}-TCP$ (tricalcium phosphate) and OCP (octacalcium phosphate) crystalline structures were observed in the Ti-mSBF-CHX specimen. FT-IR spectra showed the strong peaks of CHX in Ti-mSBF-adCHX and Ti-mSBF-CHX groups. However, after immersing in a phosphate buffered saline (PBS), CHX was rapidly released in Ti-mSBF-adCHX group, while it was slowly released in Ti-mSBF-CHX. We expect that the coating method of Ti-mSBF-CHX group could be used for protecting inflammation of titanium implant by incorporating antibacterial agent CHX into HAp layer.

Transition Metal Dichalcogenide Nanocatalyst for Solar-Driven Photoelectrochemical Water Splitting (전이금속 디칼코제나이드 나노촉매를 이용한 태양광 흡수 광화학적 물분해 연구)

  • Yoo, Jisun;Cha, Eunhee;Park, Jeunghee;Lim, Soo A
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.2
    • /
    • pp.25-38
    • /
    • 2020
  • Photoelectrochemical water splitting has been considered as the most promising technology for generating hydrogen energy. Transition metal dichalcogenide (TMD) compounds have currently attracted tremendous attention due to their outstanding ability towards the catalytic water-splitting hydrogen evolution reaction (HER). Herein, we report the synthesis method of various transition metal dichalcogenide including MoS2, MoSe2, WS2, and WSe2 nanosheets as excellent catalysts for solar-driven photoelectrochemical (PEC) hydrogen evolution. Photocathodes were fabricated by growing the nanosheets directly onto Si nanowire (NW) arrays, with a thickness of 20 nm. The metal ion layers were formed by soaking the metal chloride ethanol solution and subsequent sulfurization or selenization produced the transition metal chalcogenide. They all exhibit excellent PEC performance in 0.5 M H2SO4; the photocurrent reaches to 20 mA cm-2 (at 0 V vs. RHE) and the onset potential is 0.2 V under AM1.5 condition. The quantum efficiency of hydrogen generation is avg. 90%. The stability of MoS2 and MoSe2 is 90% for 3h, which is higher than that (80%) of WS2 and WSe2. Detailed structure analysis using X-ray photoelectron spectroscopy for before/after HER reveals that the Si-WS2 and Si-WSe2 experience more oxidation of Si NWs than Si-MoS2 and Si-MoSe2. This can be explained by the less protection of Si NW surface by their flake shape morphology. The high catalytic activity of TMDs should be the main cause of this enhanced PEC performance, promising efficient water-splitting Si-based PEC cells.