DOI QR코드

DOI QR Code

A Reaserch on the Performance Verification of Energy Storage Mortar Enhanced in Thermal Efficiency and Strength by Applying Microencapsulated Phase Change Materials and Nanomaterials

마이크로캡슐로 코팅한 상변화 물질과 나노소재를 적용한 고효율 열저장 시멘트 복합체 성능 검증 연구

  • Ahn, Jun Hyuk (Korea Construction Standards Center)
  • 안준혁 (한국건설기술연구원 국가건설기준센터)
  • Received : 2024.05.08
  • Accepted : 2024.05.24
  • Published : 2024.08.01

Abstract

This study aims to prevent freezing of existing domestic buildings by developing an energy storage mortar with increased energy efficiency that can reduce the increase in carbon emissions and maintenance costs due to external energy use due to heat wires in civil engineering and buildings with embedded heat wires. I suggest. Research has focused on incorporating phase change materials (PCMs) into common cement composites to provide latent heat performance. However, concrete mixed with phase change materials shows problems such as leakage of phase change materials, decreased strength, and insufficient thermal performance. To overcome this problem, we encapsulate phase change materials using microcapsules and mix them into cement composites to minimize strength loss and leakage, and use multi-walled carbon nanotubes and silica fume to minimize the strength reduction of concrete. A heat storage cement composite was developed. When high-efficiency heat storage cement was used as a replacement for ordinary cement composite in an environment where heat wires were buried, the effect was shown to reduce energy by about 42 %, and compared to a cement composite containing only PCM, the compressive strength and bending strength were 18 % and 23 %, respectively. was improved and its effectiveness was proven.

본 연구는 기존 국내 건축물의 동결을 방지를 위해 열선을 매립한 토목 및 건축물의 열선으로 인한 외부 에너지 사용으로 탄소 배출 및 유지관리비용이 증가하는 것을 절감시킬 수 있는 에너지 효율을 증대한 에너지 저장 시멘트 복합체를 제안한다. 최근 탄소 저감을 위해 상변화 물질(PCM)을 일반 시멘트 복합체에 통합하여 잠열 성능을 부여하는 연구가 진행되어왔다. 그러나 상변화 물질을 혼입한 콘크리트의 경우 상변화 물질의 유출, 강도 저하 및 부족한 열적 성능 등에서 문제점을 보이는 경향이 있다. 본 연구에서는 이러한 문제를 극복하기 위해 마이크로캡슐을 이용하여 상변화 물질을 캡슐화시켜 시멘트 복합체에 혼입하고 다중벽탄소나노튜브와 실리카 퓸을 사용하여 시멘트 복합체의 강도 감소를 최소화시킨 고효율 열저장 시멘트 복합체를 제안한다. 열선을 매립한 환경에서 보통 시멘트 복합체를 대체하여 고효율 열저장 시멘트를 사용한 경우 약 42 %의 에너지를 저감하는 효과를 보여주었으며 PCM만 혼입한 시멘트 복합체에 비해 압축강도, 휨강도는 각각 18 %, 23 %을 개선하여 사용성을 입증하였다.

Keywords

References

  1. Cunha, S., Silva, M. and Aguiar, J. (2020). "Behavior of cementitious mortars with direct incorporation of nonencapsulated phase change material after severe temperature exposure." Construction and Building Materials, Vol. 230, 117011, https://doi.org/10.1016/j.conbuildmat.2019.117011.
  2. Haider, M. Z., Jin, X., Sharma, R., Pei, J. and Hu, J. W. (2022). "Enhancing the compressive strength of thermal energy storage concrete containing a low-temperature phase change material using silica fume and multiwalled carbon nanotubes." Construction and Building Materials, Vol. 314, 125659, https://doi.org/10.1016/j.conbuildmat.2021.125659.
  3. Hunger, M., Entrop, A. G., Mandilaras, I., Brouwers, H. J. H. and Founti, M. (2009). "The behavior of self-compacting concrete containing micro-encapsulated phase change materials." Cement and Concrete Composites, Vol. 31, No. 10, pp. 731-743, https://doi.org/10.1016/j.cemconcomp.2009.08.002.
  4. Jin, X., Haider, M. Z., Park, M. W. and Hu, J. W. (2023). "Thermal performance evaluation of composite phase change material developed through sol-gel process." Journal of Civil and Environmental Engineering Research, Vol. 43, No. 5, pp. 555-566, https://doi.org/10.12652/Ksce.2023.43.5.0555 (in Korean).
  5. Kim, G. M., Nam, I. W., Yang, B., Yoon, H. N., Lee, H. K. and Park, S. (2019). "Carbon nanotube (CNT) incorporated cementitious composites for functional construction materials: The state of the art." Composite Structures, Vol. 227, 111244, https://doi.org/10.1016/j.compstruct.2019.111244.
  6. Kim, G. M., Yang, B. J., Cho, K. J., Kim, E. M. and Lee, H. K. (2017). "Influences of CNT dispersion and pore characteristics on the electrical performance of cementitious composites." Composite Structures, Vol. 164, pp. 32-42, https://doi.org/10.1016/j.compstruct.2016.12.049.
  7. Kim, S. W., Choi, K. B. and Yun, H. D. (2010). "Effect of freeze-thaw cycles after cracking damage on the flexural behavior of reinforced concrete beams." Journal of the Korea Concrete Institute, Vol. 22, No. 3, pp. 399-407, https://doi.org/10.4334/JKCI.2010.22.3.399 (in Korean).
  8. Konsta-Gdoutos, M. S., Danoglidis, P. A. and Shah, S. P. (2019). "High modulus concrete: Effects of low carbon nanotube and nanofiber additions." Theoretical and Applied Fracture Mechanics, Vol. 103, 102295, https://doi.org/10.1016/j.tafmec.2019.102295.
  9. Kyoung, J. H., Kim, S. M. and Hu, J. W. (2022). "Development of nanomodified snow-melting concrete using low-temperature phase-change material impregnated lightweight aggregate." Journal of Civil and Environmental Engineering Research, Vol. 42, No. 6, pp. 787-792, https://doi.org/10.12652/Ksce.2022.42.6.0787 (in Korean).
  10. Michael, T. (2013). Supplementary Cementing Materials, 1st Edition, CRC Press.
  11. Ministry of Land, Infrastructure and Transport (MLTMA) (2021). A total of 7,275,266 buildings nationwide/3.96 billion m2 https://www.molit.go.kr/USR/NEWS/m_71/dtl.jsp lcmspage=1&id=95085286 (in Korean).
  12. Riffat, S., Mempouo, B. and Fang, W. (2015). "Phase change material developments: a review." International Journal of Ambient Energy, Vol. 36, No. 3, pp. 102-115, https://doi.org/10.1080/01430750.2013.823106.
  13. Sakulich, A. R. and Bentz, D. P. (2012). "Incorporation of phase change materials in cementitious systems via fine lightweight aggregate." Construction and Building Materials, Vol. 35, pp. 483-490, https://doi.org/10.1016/j.conbuildmat.2012.04.042.
  14. Savija, B. (2018). "Smart crack control in concrete through use of Phase Change Materials (PCMs): A review." Recent Advances in Smart Materials for the Built Environment, Vol. 11, No. 5, 654, https://doi.org/10.3390/ma11050654.
  15. Skovajsa, J., Kolacek, M. and Zalesak, M. (2017). "Phase change material based accumulation panels in combination with renewable energy sources and thermoelectric cooling." Energies, Vol. 10, No. 2, pp. 1-18, https://doi.org/10.3390/en10020152.
  16. Zahir, M. H., Mohamed, S. A., Saidur, R. and Al-Sulaiman, F. A. (2019). "Supercooling of phase-change materials and the techniques used to mitigate the phenomenon." Applied Energy, Vol. 240, pp. 793-817, https://doi.org/10.1016/j.apenergy.2019.02.045.