• Title/Summary/Keyword: 나노 에멀젼 안정성 분석

Search Result 10, Processing Time 0.026 seconds

Fabrication and Filtering Test of Nanoparticle-Stabilized Emulsion to be Suitable for Enhanced Oil Recovery (석유증진회수에 적합한 나노 에멀젼의 제조 및 필터링 시험 분석)

  • Son, Han Am;Lee, Keun Ju;Cho, Jang Woo;Im, Kyung Chul;Kim, Jin Woong;Kim, Hyun Tae
    • Economic and Environmental Geology
    • /
    • v.46 no.1
    • /
    • pp.51-61
    • /
    • 2013
  • Researches on the oil recovery enhancement using the nanotechnology has recently been studied in the United States. The previous researches has focused mainly on the flow characteristics of nanoparticles in porous media, and the stability of the nano-emulsion itself. However, the analysis did not deal with the size effects between a nano-emulsion and the pore size which has an important role when nano-emulsion flows in the porous media. In this research, nano-based emulsion was fabricated which is able to be applied for the enhanced oil recovery techniques and its characteristics was analyzed. In addition, in order to identify the characteristics of nano-emulsions flowing through the porous media, the size effect was analysed by filtering test. According to the results, when the emulsion was fabricated, SCA(Silane Coupling Agent) or PVA(Poly Vinyl Alcohol) are added to improve the stability of emulsion. As the ratio of the decane to water increased, the viscosity of emulsion and the droplet size also increased. For the filtering test at the atmospheric conditions, the droplet did not go through the filter; only the separated water from the emulsion was able to be filtered. This phenomenon occurred because the droplet was not able to overcome the capillary pressure. At the filtering test by suction pressure, most of the emulsion was filtered over the filter size of $60{\mu}m$. However, the ratio of filtration was rapidly degraded at less than $45{\mu}m$ filters. This is caused due to deformation and destruction of the droplet by strong shear stress when passing through the pore. The results from the study on the basic characteristic of nano-emulsion and filtering test will be expected to play as the important role for the fabrication of the stable nano-emulsion or the research on the recovery of residual oil in porous media.

Novel Encapsulation with New Glyceryl Ester Vesicle Enhances Stability of Nanoemulsion Containing Astaxanthin (아스타잔틴을 포함하는 나노에멀젼의 안정성 향상을 위한 신규 Glyceryl Ester 이용 캡슐화)

  • Kim, Dong Myung;Hong, Weon Ki;Kong, Soo Sung;Lee, Un Yep
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.3
    • /
    • pp.225-231
    • /
    • 2013
  • Oil in water nanoemulsion of astaxanthin was prepared by high pressure homogenization. The emulsifying conditions including emulsifier type, concentration and astaxanthin concentration were optimized. Stability of nanoemulsion was measured using zetasizer, freeze-fracture scanning electron microscope (FF-SEM), particle analyzer and colorimeter. The mean diameter of the dispersed particles containing astaxanthin ranged from 160 to 190 nm. Size distribution was unimodal and extended from 40 to 200 nm. The nanoemulsion prepared by glyceryl citrate/lactate/linoleate/oleate had smaller particle size and narrow size distribution. Stable incorporation of astaxanthin in nanoemulsion was performed and checked using high performance liquid chromatography (HPLC), freeze-fracture scanning electron microscope (FF-SEM). Physical stability of nanoemulsion was not significantly changed during storage at both light and thermal condition for a month with zeta potential value of -41 mV meaning stable colloid.

Effect of Surface Modification of CaCO3 Nanoparticles by a Silane Coupling Agent Propyltrimethoxysilane on the Stability of Emulsion and Foam (실란 커플링제 프로필트리메톡시실란에 의해 표면 개질된 CaCO3 나노입자가 에멀젼과 기포 안정성에 미치는 영향에 관한 연구)

  • Lee, YeJin;Park, KiHo;Lim, JongChoo
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.49-56
    • /
    • 2020
  • In this study, surface modification of CaCO3 nanoparticles by a silane coupling agent propyltrimethoxysilane (PTMS) was conducted and the effect of surface hydrophobicity on the stability of foam and emulsion was studied in order to test the potential applicability as a foam stabilizer or an emulsifier. The surface modification of CaCO3 nanoparticles by PTMS was confirmed by FT-IR, DSC and TGA analysis. The atomic concentration of CaCO3 particle surface treated by PTMS has been also identified by using XRD and XPS analyses. Both floating tests and contact angle measurements were also performed to examine the effect of PTMS concentration on the surface modification of CaCO3 nanoparticles.

Effect of Surface Modification of Calcium Carbonate Nanoparticles by Octyltrimethoxysilane on the Stability of Emulsion and Foam (실란 커플링제 옥틸트리메톡시실란에 의해 표면 개질된 탄산칼슘 나노입자가 에멀젼 및 기포 안정성에 미치는 영향)

  • Lim, Jong Choo;Park, Ki Ho;Lee, Jeong Min;Shin, Hee Dong
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.386-393
    • /
    • 2022
  • In this study, the surface modification of calcium carbonate (CaCO3) nanoparticles by a silane coupling agent, octyltrimethoxysilane (OTMS), was investigated and characterized using Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) analysis. Both floating tests and contact angle measurements were also conducted to study the effect of OTMS concentration on the hydrophobicity of CaCO3 nanoparticles. It was found that the active ratio for the CaCO3 nanoparticles modified by 1 wt% of OTMS was 97.0 ± 0.5%, indicating that OTMS is a very effective silane coupling agent in enhancing the hydrophobicity of the CaCO3 nanoparticle surface. The most stable foam was generated with 1 wt% of CaCO3 nanoparticles in aqueous solutions at 1 wt% of OTMS, where the contact angle of water was found to be 91.8 ± 0.7°. It was also found that the most stable emulsion drops were formed at the same OTMS concentration. These results suggest that CaCO3 nanoparticles modified by a silane coupling agent OTMS are a powerful candidate for a foam stabilizer or an emulsifier in many industrial applications.

Stabilization of Nanoemulsion Using PEG-free Surfactant (PEG-free 계면활성제를 사용한 Nanoemulsion의 안정화)

  • Kim, Huiju;Jung, Taek Kyu;Kim, Ja Young;Yoon, Kyung-Sup
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.434-447
    • /
    • 2019
  • Polyethylene glycol (PEG) is widely used in cosmetics as a surfactant, detergent and emulsifier. During the manufacturing process, 1,4-dioxane, which is toxic to humans, can be produced as a by-product by dimerization of ethylene oxide. As consumers' interest in cosmetic ingredients has increased, the need for safe emulsion research without PEG ingredients in the personal care market has increased. With increasing consumer interest in cosmetic ingredients, the need for safer emulsion research without the PEG ingredient in the personal care market has increased. In this study, we aimed to develop and stabilize nanoemulsion formulation without PEG. Response Surface Methodology (RSM) was used to develop optimized nanoemulsion formulations. Surfactant content (2~4%), oil content (4~8%) and polyol content (12~24%) were set as independent variables as a result of preliminary experiments for determining independent variables and ranges. The particle size, zeta potential, turbidity, and polydispersity index of the formulation were measured as response variables. As a result of measurement of the prepared nanoemulsion by FIB (Focused ion beam), spherical particles were found to have a size distribution of 100 to 200 nm. The stability of each formulation was evaluated for 30 days at each temperature ($4^{\circ}C$, $25^{\circ}C$, and $45^{\circ}C$). The optimal formulation considering the optimum particle size, turbidity, polydispersity index and zeta potential was found to be surfactant (2%), oil (8%) and polyol (24%).

Development of Nano Carbon Tile for Far-Infrared Thermotherapy Effect (원적외선 온열효과를 위한 나노탄소타일 개발)

  • Yoon, Dal-Hwan;Uhm, Woo-Yong
    • Journal of IKEEE
    • /
    • v.21 no.1
    • /
    • pp.24-29
    • /
    • 2017
  • In this paper, we have developed the nano carbon tile and chip which is based on a reducing process of oxidation and the viscous fluid control, after hardening to the stylene monomer and methylol acrylamide monomer using an acrylic emulsion junction material. Then we can obtain the sphere form structure of diagonal 1~3 mm, they have mixture the acrylic emulsion junction material(45%) and the coconut carbon powder(55%) of size 300~500 mesh for 25~30 min. Finally, if we have dry for the formated carbon including 30~90 minute at $90{\sim}300^{\circ}C$, then be obtained for pure carbon formation of 95%. In order to identify the safety of the friendly circumstance carbon formation, we have tested the far-infrared ratio, energy analysis, gas density and anti-disease germs experiment.

The coating of vitamin C on the surface of polymethylmethacrylate microsphere (Polymethylmethacrylate 입자에 표면에 비타민 C의 코팅)

  • Kim, Kyung-Hee;Choi, Seong-Ho
    • Analytical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.468-472
    • /
    • 2006
  • This paper was described that the preparation of polymetylmethacrylate (PMMA) microsphere and coating of vitamin C onto surface of the prepared PMMA microsphere for application of cosmetic materials. The PMMA microsphere with various sizes can be obtained by change of reaction condition such as reaction temperature and reaction time. The coating of vitamin C on the surface of PMMA microsphere by using cyclodextrin as binder can be achieved to 30 wt-% in water/ethanol mixture. The vitamin C coated with cyclodextrin was stabilized during 56 days at $40^{\circ}C$. The color of the coated Vitamin C was changed from white to dark yellow after 14 days at $40^{\circ}C$. The vitamin C coated with cyclodextrin on the surface of PMMA microsphere can be sufficiently used for cosmetic materials.

Preparation of Fullerene/Polystyrene Microparticles by Emulsion Polymerizations (에멀젼 중합에 의한 풀러렌/폴리스티렌 마이크로입자 제조)

  • Kim, Kun-Ji;Lee, Seung-Hee;Lee, Myong-Hoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.400-401
    • /
    • 2008
  • 전기영동형 전자종이 디스플레이의 새로운 소재로써 $C_{60}$(fullerene)와 같은 나노 입자를 포함하는 새로운 전기영동 입자를 제조하였다. 본 연구에서는 안정제로 poly(vinyl pyrrolidone)(PVP)를 사용하여 fullerene을 포함하는 styrene emulsion을 안정화 한 후 라디칼 중합을 통해 fullerene이 포함된 polystyrene microemulsion particles을 제조 합으로써 입자의 분산안정성을 높이고 전기영동에 따른 입자의 움직임을 최적화하도록 하였다. 이 실험에서는 fullerene의 양에 따라 제조된 입자의 크기와 입자 분포를 관찰하였다. 입자의 크기와 입자 분포는 주사형 전자현미경 (SEM) 을 이용하여 확인하였다. 또한 fullerene-PS 입자의 구조 분석과 특성평가를 위해서 FT-IR를 측정하였고, 입자의 열적 성질을 위해 TGA를 측정하였다.

  • PDF

Synthesis and Characterization of Epoxy Silane-modified Silica/Polyurethane-urea Nanocomposite Films (에폭시 변성 실리카 나노입자/폴리우레탄-우레아 나노복합체 필름의 제조 및 특성 연구)

  • Joo, Jin;Kim, Hyeon Seok;Kim, Jin Tae;Yoo, Hye Jin;Lee, Jae Ryung;Cheong, In Woo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.371-378
    • /
    • 2012
  • Hydrophilic silica nanoparticles (SNPs) were treated by using 3-glycidoxypropyltrimethoxy silane (GPTMS) and then they were blended with polyurethane-urea (PUU) emulsions to obtain SNPs/PUU nanocomposite films. Thermo-mechanical properties of the nanocomposite films were investigated by varying the grafted amount of GPTMS onto SNPs and the contents of SNPs in the PUU matrix. The thermo-mechanical properties of the nanocomposite films were also compared in terms of the dispersibility of SNPs in the PUU matrix and thermal curing of the GPTMS-grafted SNPs. The maximum amount of grafted GPTMS was $1.99{\times}10^{-6}\;mol/m^2$, and which covered ca. 53% of the total SNP surface area. $^{29}Si$ CP/MAS NMR analyses with the deconvolution of peaks revealed the details of polycondensation degree and patterns of GPTMS in the surface modification of SNPs. The surface modification did not significantly affect colloidal stability of the SNPs in aqueous medium; however, the hydrophobic modification of SNPs offered a favorable effect on the dispersibility of SNPs in the PUU matrix as well as better thermal stability. XRD patterns revealed that GPTMS-grafted SNPs broadened the reduced the characteristic peak of polyol in PUU matrix. The composite films became rigid and less flexible as the SNP content increased from 5 wt.% to 20 wt.%. Particularly, Young's modulus and tensile modulus significantly increased after the thermal curing reaction of the epoxy groups in the SNPs.

Development of Chitosan Coated Solid Lipid Nano-particles Containing 7-Dehydrocholesterol (7-디하이드로콜레스테롤을 함유한 키토산 코팅 처리 Solid Lipid Nano-particle의 개발에 관한 연구)

  • Lee Geun-Soo;Kim Tae-Hoon;Lee Chun-Il;Pyo Hyeong-Bae;Choe Tae-Boo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.2 s.51
    • /
    • pp.141-146
    • /
    • 2005
  • Unstable cosmetic active ingredients could rapidly break down in chemical and photochemical process. Therefore, it has become a very important issue to encapsulate active ingredient for the stabilization. 7-Dehydrocholesterol (7-DHC), a precursor of vitamin $D_3$, has been shown to increase levels of protein and mRNA for heat shock protein in normal human epidermal keratinocytes. However, topical dermal application of 7-DHC is restricted due to its poor solubility and chemical unstability. In this study, 7-DHC was incorporated into nano-emulsion (NE), solid lipid nano-particle (SLN), and chitosan coated solid lipid nano-particle (CASLN), respectively. In order to prepare NE and SLN dispersion, high-pressure homogenization at temperature above the melting point of lipid was used Hydrogenated lecithin and polysorbate 60 were used as stabilizer for NE and SLN. CASLN was prepared by high speed homogenizing after adding chitosan solution to the SLN dispersion and showed positively charged particle properties. Decomposition rate of 7-DHC in NE, SLN and CASLN was studied as a function of time at different temperature. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) studies were performed to characterize state of lipid modification. It appeared that CASLN is the most effective to stabilize 7-DHC and may be used for a useful topical dermal delivery system.