DOI QR코드

DOI QR Code

Stabilization of Nanoemulsion Using PEG-free Surfactant

PEG-free 계면활성제를 사용한 Nanoemulsion의 안정화

  • Kim, Huiju (Department of Chemistry and Cosmetics, College of National Science, Jeju National University) ;
  • Jung, Taek Kyu (Skin Science R&D Center, Saimdamg Cosmetics, Co., Ltd.) ;
  • Kim, Ja Young (Skin Science R&D Center, Saimdamg Cosmetics, Co., Ltd.) ;
  • Yoon, Kyung-Sup (Department of Chemistry and Cosmetics, College of National Science, Jeju National University)
  • 김희주 (제주대학교 화학.코스메틱스학과센터) ;
  • 정택규 ((주)사임당화장품 피부과학연구소) ;
  • 김자영 ((주)사임당화장품 피부과학연구소) ;
  • 윤경섭 (제주대학교 화학.코스메틱스학과센터)
  • Received : 2019.05.28
  • Accepted : 2019.06.25
  • Published : 2019.06.30

Abstract

Polyethylene glycol (PEG) is widely used in cosmetics as a surfactant, detergent and emulsifier. During the manufacturing process, 1,4-dioxane, which is toxic to humans, can be produced as a by-product by dimerization of ethylene oxide. As consumers' interest in cosmetic ingredients has increased, the need for safe emulsion research without PEG ingredients in the personal care market has increased. With increasing consumer interest in cosmetic ingredients, the need for safer emulsion research without the PEG ingredient in the personal care market has increased. In this study, we aimed to develop and stabilize nanoemulsion formulation without PEG. Response Surface Methodology (RSM) was used to develop optimized nanoemulsion formulations. Surfactant content (2~4%), oil content (4~8%) and polyol content (12~24%) were set as independent variables as a result of preliminary experiments for determining independent variables and ranges. The particle size, zeta potential, turbidity, and polydispersity index of the formulation were measured as response variables. As a result of measurement of the prepared nanoemulsion by FIB (Focused ion beam), spherical particles were found to have a size distribution of 100 to 200 nm. The stability of each formulation was evaluated for 30 days at each temperature ($4^{\circ}C$, $25^{\circ}C$, and $45^{\circ}C$). The optimal formulation considering the optimum particle size, turbidity, polydispersity index and zeta potential was found to be surfactant (2%), oil (8%) and polyol (24%).

폴리에틸렌글라이콜(PEG)은 계면활성제, 세정제, 유화제 등으로 화장품에 많이 사용된다. 이들은 제조 과정 중, ethylene oxide의 이량체화에 의해 인간에 몸에 유해한 1,4-dioxane이 부산물로 생성될 수 있다. 화장품 성분에 대한 소비자들의 관심이 증가함에 따라, 퍼스널케어 시장에서 PEG 성분이 없는 보다 안전한 에멀젼 연구의 필요성이 증대되고 있다. PEG-free 계면활성제로 사용되는 polyglycerol ester (PGE)는 비이온성 계면활성제로서 식품, 화장품 등의 분야에서 많이 사용되며 글리세롤과 지방산을 에스테르화 하여 생산된다. 본 연구에서는 PEG 성분을 함유하지 않은 나노에멀젼 제형의 개발 및 안정화를 목표로 하였다. 최적화된 나노에멀젼 제형 개발을 위해 RSM (Response Surface Methodology)를 사용하였다. 독립변수 및 변수의 범위 결정을 위한 예비 실험의 결과로 계면활성제 함량(2~4%), 오일 함량(4~8%), 폴리올 함량(12~24%)을 독립변수로 설정하였다. 반응변수로는 제형의 입자 크기(particle size), 제타 전위(zeta potential), 현탁도(turbidity), 다분산지수(polydispersity index)를 측정하였다. 제조한 나노에멀젼을 FIB (Focused ion beam)로 측정한 결과, 구형의 입자들이 100~200 nm의 크기를 가지고 분포되어 있는 것을 확인하였다. 제조된 제형에 대해 30일 간 각 온도별($4^{\circ}C$, $25^{\circ}C$, $45^{\circ}C$) 안정성 평가를 진행하였고, 최적의 입자 크기, 현탁도, 다분산지수, 제타 전위를 고려한 최적의 처방은 계면활성제(2%), 오일(8%), 폴리올(24%)로 확인되었다.

Keywords

HGOHBI_2019_v36n2_434_f0001.png 이미지

Fig. 1. Model and size of nanoemulsion.

HGOHBI_2019_v36n2_434_f0002.png 이미지

Fig. 2. Structure of polyglycerol ester.

HGOHBI_2019_v36n2_434_f0003.png 이미지

Fig. 3. Box-Behnken design, The point at the center of the cube corresponds to the center of the Box-Behnken design, and the point at the middle of each line of the cube corresponds to the IBFact.

HGOHBI_2019_v36n2_434_f0004.png 이미지

Fig. 4. 3D surface graphs. (A-C): particle size of nanoemulsion depending on surfactant, oil, and polyol contents; (D-F): Zeta potential of nanoemulsion depending on surfactant, oil, and polyol contents; (G-I): turbidity of nanoemulsion depending on surfactant, oil, and polyol contents; (J-L): PDI of nanoemulsion depending on surfactant, oil, and polyol contents.

HGOHBI_2019_v36n2_434_f0005.png 이미지

Fig. 5. Response variable values for each sample.

HGOHBI_2019_v36n2_434_f0006.png 이미지

Fig. 6. FIB image of PEG-free nanoemulsion (magnification 50,000x).

Table 1. List of used raw materials

HGOHBI_2019_v36n2_434_t0001.png 이미지

Table 2. Independent variable range of preliminary experiments

HGOHBI_2019_v36n2_434_t0002.png 이미지

Table 3. Independent variables range of PEG-free nanoemulsion optimization experiments

HGOHBI_2019_v36n2_434_t0003.png 이미지

Table 4. Independent variable range for PEG-free nanoemulsion optimization experiments

HGOHBI_2019_v36n2_434_t0004.png 이미지

Table 5. Preliminary experiment by Box-Behnken design

HGOHBI_2019_v36n2_434_t0005.png 이미지

Table 6. Box-Behnken design experiments for PEG-free nanoemulsion optimization

HGOHBI_2019_v36n2_434_t0006.png 이미지

Table 7. ANOVA for the model

HGOHBI_2019_v36n2_434_t0007.png 이미지

Table 8. Coefficient table

HGOHBI_2019_v36n2_434_t0008.png 이미지

Table 9. PEG-free nanomultimate optimization criteria

HGOHBI_2019_v36n2_434_t0009.png 이미지

Table 10. PEG-free nanoemulsion optimal prescription

HGOHBI_2019_v36n2_434_t0010.png 이미지

References

  1. P. Thiagarajan, "Nanoemulsions for drug delivery through different routes", Research in Biotechnology, Vol. 2, No. 3, pp. 01-13, (2011).
  2. G. Y. Noh, J. Y. Suh, S. N. Park, "Ceramide-based nanostructured lipid carriers for transdermal delivery of isoliquiritigenin: Development, physicochemical characterization, and in vitro skin permeation studies", Korean Journal of Chemical Engineering, Vol. 34, No. 2, pp. 400-406, (2017). https://doi.org/10.1007/s11814-016-0267-3
  3. W. G. Cho, K. A. Kim, S. I. Jang, B. O. Cho, "Behaviour of nanoemulsions containing Ceramide IIIB and stratum corneum lipids", Journal of the Society of Cosmetic Scientists of Korea, Vol. 44, No. 1, pp. 31-37, (2018). https://doi.org/10.15230/SCSK.2018.44.1.31
  4. J. Meyer, R. Scheuermann, H. H. Wenk, "Combining convenience and sustainability: simple processing of PEG-free nanoemulsions and classical emulsions", SOFW Journal, Vol. 134, No. 6, pp. 54-61, (2008).
  5. W. G. Cho, E. H. Kim, B. J. Jeon, Y. K. Cha, S. K. Park, "Stability of nanoemulsions prepared upon change of composition", Journal of the Society of Cosmetic Scientists of Korea, Vol. 39, No. 1, pp. 55-63, (2013). https://doi.org/10.15230/SCSK.2013.39.1.055
  6. P. Shah, D. Bhalodia, P. Shelat, "Nanoemulsion: a pharmaceutical review", Systematic Reviews in Pharmacy, Vol. 1, No. 1, pp. 24-32, (2010). https://doi.org/10.4103/0975-8453.59509
  7. Y. Singh, J. G. Meher, K. Raval, F. A. Khan, M. Chaurasia, N. K. Jain, M. K. Chourasia, "Nanoemulsion: concepts, development and applications in drug delivery", Journal of Controlled Release, Vol. 252, pp. 28-49, (2017). https://doi.org/10.1016/j.jconrel.2017.03.008
  8. C. Fruijtier-Polloth, "Safety assessment on polyethylene glycols (PEGs) and their derivatives as used in cosmetic products", Toxicology, Vol. 214, No. 1/2, pp. 1-38, (2005). https://doi.org/10.1016/j.tox.2005.06.001
  9. R. E. Black., F. J. Hurley, D. C. Havery. "Occurrence of 1, 4-dioxane in cosmetic raw materials and finished cosmetic products", Journal of AOAC International, Vol. 84, No. 3, pp. 666-670, (2001). https://doi.org/10.1093/jaoac/84.3.666
  10. C. B. Fuh, M. Lai, H. Y. Tsai, C. M. Chang, "Impurity analysis of 1, 4-dioxane in nonionic surfactants and cosmetics using headspace solid-phase microextraction coupled with gas chromatography and gas chromatography-mass spectrometry", Journal of Chromatography A, Vol. 1071, No. 1/2, pp. 141-145, (2005). https://doi.org/10.1016/j.chroma.2004.09.012
  11. T. Kato, T. Nakamura, M. Yamashita, M. Kawaguchi, T. Kato, T. Itoh, "Surfactant properties of purified polyglycerol monolaurates", Journal of Surfactants and Detergents, Vol. 6, No. 4, pp. 331-338, (2003). https://doi.org/10.1007/s11743-003-0278-x
  12. K. C. Kang, N. H. Jeong, "A study on the stability of emulsion by polyglycerol ester", Journal of Oil & Applied Science, Vol. 30, No. 1, pp. 152-159, (2013). https://doi.org/10.12925/JKOCS.2013.30.1.152
  13. R. Su, L. Yang, Y. Wang, S. Yu, Y. Guo, J. Deng, Q. Zhao, X. Jin, "Formulation, development, and optimization of a novel octyldodecanol-based nanoemulsion for transdermal delivery of Ceramide IIIB", International Journal of Nanomedicine, Vol. 12, pp. 5203-5221, (2017). https://doi.org/10.2147/IJN.S139975
  14. I. M. Yang, G. T. Oh, C. B. Yu, I. G. Hwang, "Design and analysis of experiments", pp. 432-433, Minyoungsa, (2015).
  15. L. O. Orafidiya, F. A. Oladimeji, "Determination of the required HLB values of some essential oils", International Journal of Pharmaceutics, Vol. 237, No. 1/2, pp. 241-249, (2002). https://doi.org/10.1016/S0378-5173(02)00051-0
  16. K. W. Kim, S. G. Baek, B. J. Park, H. W. Kim, I. J. Rhyu, "Applications of focused ion beam for biomedical research", Korean Society of Electron Microscopy, Vol. 40, No. 4, pp. 177-183, (2010).
  17. S. Kotta, A. W. Khan, S. H. Ansari, R. K. Sharma, J. Ali, "Formulation of nanoemulsion: a comparison between phase inversion composition method and high-pressure homogenization method", Drug Delivery, Vol. 22, No. 4, pp. 455-466, (2015). https://doi.org/10.3109/10717544.2013.866992