• Title/Summary/Keyword: 나노 공정법

Search Result 373, Processing Time 0.026 seconds

Determination of Crystal Size and Microstrain of $CeO_2$ by Rietveld Structure Refinement (리트벨트 구조분석법에 의한 $CeO_2$의 결정크기 및 미세응력 결정)

  • Hwang, Gil-Chan;Choi, Jin-Beom
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.201-208
    • /
    • 2008
  • Ceria ($CeO_2$) becomes one of important functional nanomaterials and a key abrasive material for chemical-mechanical planarization (CMP) of advanced integrated circuits in silicon semi-conductor technology. Two synthetic crystalline ceria (RT735, RT835) are studied by the Rietveld structural refinement to determine crystallite size and microstrain. Rietveld indices of RT735 and RT835 indicate good fitting with $R_p(%)=8.50$, 8.34; $R_{wp}(%)=13.4$, 13.5; $R_{exp}(%)=11.3$, 11.5; $R_B(%)=2.21$, 2.36; S(GofF: Goodness of fit)=1.2, 1.2, respectively. $CeO_2$ with space group Fm3m show a=5.41074(2), 5.41130(6) ${\AA}$, V=158.406(1), 158.455(3)${\AA}^3$ in dimension. Detailed Rietveld refinement reveals that crystallite size and microstrain are 37.42(1) nm, 0.0026 (RT735) and 72.80(2) nm, 0.0013 (RT835), respectively. It also shows that crystallite size and microstrain of ceria are inversely proportional to each other.

Preparation and Characterization of Tungsten Carbide Using Products of Hard Metal Sludge Recycling Process (초경합금 슬러지 재활용 공정 산물을 활용한 텅스텐 탄화물 제조 및 특성 평가)

  • Kwon, Hanjung;Shin, Jung-Min
    • Resources Recycling
    • /
    • v.31 no.4
    • /
    • pp.19-25
    • /
    • 2022
  • In this study, tungsten carbide (WC) powder was prepared using a novel recycling process for hard metal sludge that does not use ammonium paratungstate. Instead of ammonia, acid was used to remove the sodium and crystallized tungstate, resulting in the formation of tungstic acid (H2WO4). The WC powder was successfully synthesized by the carbothermal reduction of tungstic acid through H2O decomposition, reduction of WO3 to W, and formation of WC. The carbon content and holding time at the carbothermal reduction temperature were optimized to remove free carbon from the WC powder. As a result, most of the free carbon in the WC powder prepared from sludge was removed, and the content of free carbon in the synthesized WC powder was lower than that in commercial WC powder. Moreover, the crystallite size of WC prepared from H2WO4 was much smaller than that of commercial micron-sized WC powder produced from APT. The small crystallite size of WC induces grain growth during the sintering of the WC-Co composite; thus, a WC-Co composite with large WC grains was fabricated using the WC powder prepared from H2WO4. The large WC grains affected the mechanical properties of the WC-Co composite. Further, due to the large grain size, the WC-Co composite fabricated from H2WO4 exhibited a higher toughness than that of the WC-Co composite prepared from commercial WC powder.

Effect of Reduced Graphite Oxide as Substrate for Zinc Oxide to Hydrogen Sulfide Adsorption

  • Jeon, Nu Ri;Song, Hoon Sub;Park, Moon Gyu;Kwon, Soon Jin;Ryu, Ho Jeong;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.300-305
    • /
    • 2013
  • Zinc oxide (ZnO) and reduced graphite oxide (rGO) composites were synthesized and tested as adsorbents for the hydrogen sulfide ($H_2S$) adsorption at mid-to-high (300 to $500^{\circ}C$) temperatures. In order to investigate the critical roles of oxygen containing functional groups, such as hydroxyl, epoxy and carboxyl groups, attached on rGO surface for the $H_2S$ adsorption, various characterization methods (TGA, XRD, FT-IR, SEM and XPS) were conducted. For the reduction process for graphite oxide (GO) to rGO, a microwave irradiation method was used, and it provided a mild reduction environment which can remain substantial amount of oxygen functional groups on rGO surface. Those functional groups were anchoring and holding nano-sized ZnO onto the 2D rGO surface; and it prevented the aggregation effect on the ZnO particles even at high temperature ranges. Therefore, the $H_2S$ adsorption capacity had been increased about 3.5 times than the pure ZnO.

Fabrication of Photocatalytic $TiO_2$ Thin Film Using Aerosol Deposition Method (Aerosol Deposition 법을 이용한 광촉매 $TiO_2$ 박막 제조)

  • Choi Byung-Kyu;Min Seok-Hong;Kim Jong-Oh;Kang Kyong-Tae;Choi Won-Youl
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.4 s.33
    • /
    • pp.55-59
    • /
    • 2004
  • We fabricates the $TiO_2$ thin film from anatase phase $TiO_2$ powder having good photocatalytic property using aerosol deposition method at room temperature. Aerosol deposition method, which sprays an aerosol powder with ultrasonic velocity and deposits a thin film on substrate at low temperature, has the advantages of low thermal stress and low cost. To fabricate the $TiO_2$ thin film, the aerosol bath pressure and chamber pressure were 500 torr and 0.4 torr, respectively. The difference of aerosol bath pressure and chamber pressure accelerated the $TiO_2$ nano powder to ultrasonic velocity through the nozzle of $0.4 mm{\times}10 mm$ and $TiO_2$ thin film was finally formed. SS mesh with diameter of 50 mm was used as a substrate to apply the $TiO_2$ thin film to water quality purification. The raw powder was dehydrated for the good dispersion of $TiO_2$ powder. To suppress the formation of second particle, the powder was dispersed for 90 min in alcohol bath by ultrasonic treatment and desiccated. The grain size of $1 {\mu}m$ was observed in $TiO_2$ thin film deposited on SUS mesh by scanning electron microscopy (SEM). The anatase phase of $TiO_2$ thin film was also observed by X-ray diffraction (XRD) and the anatase phase of raw powder was nicely maintained after aerosol deposition. The results are applicable to water treatment filter having photocatalytic reaction.

  • PDF

The Effect of Crystallization by Heat Treatment on Electromagnetic Interference Shielding Efficiency of Carbon Fibers (열처리 온도에 의한 구조 결정성이 탄소섬유의 전자파 차폐 성능에 미치는 영향)

  • Kim, Jong Gu;Chung, Choul Ho;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.138-143
    • /
    • 2011
  • To investigate the electromagnetic interference shielding efficiency (EMI SE) property based on heat treatment effects of carbon fibers in various temperatures, the polyacrilonitrle-based carbon fibers were prepared by electrospinning method and treated at 1073, 1323, 1873 and 2573 K. The surface morphology of carbon fibers was investigated by using FE-SEM and the carbon crystallization was studied by Raman spectroscopy based on effects of reaction temperatures. The electrical conductivity was obtained by measuring the surface resistance with four probe method on carbon crystallization. The permittivity, permeability and EMI SE were investigated by using S-parameter in the range of 800~4500 MHz. In case of carbon fibers treated at 2573 K, the improved carbon crystallization was confirmed by Raman spectrum and the enhanced electrical conductivity showing 54.7 S/cm was also observed. The permittivity was dramatically improved by factor of 4 based on effect of high reaction temperature. Eventually, the highly improved EMI SE value was obtained showing around 41.7 dB.

Recycling of Hardmetal Tool through Alkali Leaching Process and Fabrication Process of Nano-sized Tungsten Carbide Powder using Self-propagation High-temperature Synthesis (알칼리 침출법을 통한 초경 공구의 재활용 및 자전연소합성법을 통해 제조된 나노급 탄화텅스텐 제조공정 연구)

  • Kang, Hee-Nam;Jeong, Dong Il;Kim, Young Il;Kim, In Yeong;Park, Sang Cheol;Nam, Cheol Woo;Seo, Seok-Jun;Lee, Jin Yeong;Lee, Bin
    • Journal of Powder Materials
    • /
    • v.29 no.1
    • /
    • pp.47-55
    • /
    • 2022
  • Tungsten carbide is widely used in carbide tools. However, its production process generates a significant number of end-of-life products and by-products. Therefore, it is necessary to develop efficient recycling methods and investigate the remanufacturing of tungsten carbide using recycled materials. Herein, we have recovered 99.9% of the tungsten in cemented carbide hard scrap as tungsten oxide via an alkali leaching process. Subsequently, using the recovered tungsten oxide as a starting material, tungsten carbide has been produced by employing a self-propagating high-temperature synthesis (SHS) method. SHS is advantageous as it reduces the reaction time and is energy-efficient. Tungsten carbide with a carbon content of 6.18 wt % and a particle size of 116 nm has been successfully synthesized by optimizing the SHS process parameters, pulverization, and mixing. In this study, a series of processes for the high-efficiency recycling and quality improvement of tungsten-based materials have been developed.

Evaluation of Pretreatment Effect and Non-enzymatic Glucose Sensing Performance of Carbon Fibers Tow Electrode (탄소섬유 토우의 전처리 효과와 비효소적 포도당 센싱 성능 평가)

  • Min-Jung Song
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.13-18
    • /
    • 2024
  • To develop flexible electrode materials for wearable devices, we investigated the electrochemical characteristics of carbon fibers tow according to pretreatment. And an electrochemical non-enzymatic sensor was fabricated using glucose as a target. The carbon fibers tow was pretreated through desizing and activation processes, and activation was performed in two ways: chemical oxidation and electrochemical oxidation. Surface morphology of carbon fibers tow samples was observed by SEM and their electrochemical characteristics and sensing performance were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. Carbon fibers tow samples showed improved electrochemical properties such as reduced Ret, ΔEp, and increased Ip through pretreatment. And similar electrochemical properties were obtained with both activation methods. We selected electrochemically activated carbon fibers tow as the final electrode material for application of electrochemical sensor. The non-enzymatic glucose sensor based on this electrode has an enhanced sensitivity of 0.744 A/mM (in a linear range of 0.09899~3.75423 mM) and 0.330 mA/mM (3.75423~50 mM), respectively. Through this study, the possibility of using carbon fibers tow was confirmed as an electrode material. It is expected to be used as basic research for development of high-performance flexible electrode materials.

Quantum Dot-Sensitized Solar Cells Based on Mesoporous TiO2 Thin Films (메조포러스 이산화티타늄 박막 기반 양자점-감응 태양전지)

  • Lee, Hyo Joong
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.1
    • /
    • pp.38-44
    • /
    • 2015
  • This review article summarizes the recent progress of quantum dot (QD)-sensitized solar cells based on mesoporous $TiO_2$ thin films. From the intrinsic characteristics of nanoscale inorganic QDs with various compositions, it was possible to construct a variety of 3rd-generation thin film solar cells by solution process. Depending on preparation methods, colloidal QD sensitizers are pre-prepared for later deposition onto the surface of $TiO_2$ or in-situ deposition of QDs from chemical bath is done for direct growth of QD sensitizers over substrates. Recently, colloidal QD sensitizers have shown an overall power conversion efficiency of ~7% by a very precise control of composition while a representative CdS/CdSe from chemical bath deposition have done ~5% with polysulfide electrolytes. In the near future, it is necessary to carry out systematic investigations for developing new hole-conducting materials and controlling interfaces within the cell, thus leading to an enhancement of both open-circuit voltage and fill factor while keeping the current high value of photocurrents from QDs towards more efficient and stable QD-sensitized solar cells.

$CH_4-H_2-N_2 $ 기체계에서 MW-PACVD를 이용한 결정상의 합성

  • 김도근;백영준;성태연
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.54-54
    • /
    • 1999
  • 다이아몬드 합성시 질소 첨가는 Cn 화합물의 합성가능성을 비롯하여 다이아몬드의 질소 도핑, 성장 속도 및 결정성 변화 등 다양한 관점에서 중요한 의미를 가지고 있다. 본 연구에서는 다이아몬드의 일반적인 합성조건에서 질소를 첨가하여 합성된 막의 형상 및 상 변화에 대해 고찰하였다. 막은 다이아몬드 전처리시킨 Si 기판위에 microwave plasma CVD 장치를 이용하여 합성하였다. 유입되는 혼합가스(CH4+H2+N2)에서 N2 첨가량을 0-95%까지 변화시켰다. 이때 CH4 농도는 5%로 고정하였고, 합성온도는 90$0^{\circ}C$-115$0^{\circ}C$까지 변화시켰다. 이와 같이 합성된 막의 표면조직 및 성장 두께를 측정하기 위해 주사전자현미경을 이용하였다. 상의 분석은 Raman, XRD 및 TEM 분석을 이용하였으며, 조성분석을 위해 XPS 및 AES를 사용하였다. 질소 첨가량에 따라 합성된 막은 첨가하지 않은 경우에 다이아몬드 결정에서 시작하여 질소첨가에 따라 결정면이 깨지는 것으로 나타났다. 그러나 30%, 45%의 경우는 다시 결정면이 나타났다. 다량의 질소가 첨가되었을 때, 다시 결정면을 보이는 다이아몬드가 합성된 것은 매우 흥미로운 결과이다. 한편 질소와 메탄만의 기체하에서는 다시 결정면이 관찰되지 않았다. 이들 상의 구조는 XRD 및 TED 분석을 통해 모두 다이아몬드로 확인되었다. 기체내의 질소의 첨가에 관계없이 고상내에 질소는 확인되지 않았다. 따라서 이방법에 의한 CN 화합물의 합성은 힘든 것으로 보여진다. 이들 실험 결과를 근거로 온도 및 조성에 따른 기체의 열역학적 계산을 통하여 합성거동과의 연관성을 검토하였다. anode는 매우 높은 충전용량을 갖는데 첫 번째 방전시에 Li2O를 생성하여 비가역적 반응을 나타내고 계속되는 충방전 동안 Li-Sn 합금이 생성되어 2차전지의 가역적 반응을 가능하게 한다. SnO2 는 대기중에서 Li 금속보다 안정하기 때문에 전지의 제작 공정 및 사용 면에서 매우 우수한 물질이지만 아직까지 SnO2 구조적 특성과 전지의 충, 방전 특성에 대한 관계의 규명을 위한 정확한 정설은 제시되고 있지 못하다. 본 연구에서는 TFSB anode 물질로써 SnOx박막을 상온에서 여러 전도성 콜렉터 위에 증착하여 그 충, 방전 특성을 보고하였다. 증착된 SnOx박막의 표면은 SEM, AFM으로 분석하였으며 구조의 분석은 XR와 Auger electron spectroscope로 하였다. 충, 방전 특성을 분석하기 위하여 리늄 foil을 대극과 참조 전극으로 하여 EC:DMC=1:1, 1M LiPF6 액체 전해질을 사용한 Half-Cell를 구성하여 100회 이상의 정전류 충, 방전 시험을 행하였다. Half-Cell test 결과 박막의 구조, 콜렉터의 종류 및 Sn/O비에 따라 서로 다른 충, 방전 거동을 나타내었다.다. 거의 없었다. 5mTorr 일 때가 가장 좋았다.수 있음을 알 수 있었다. 그러므로, RNA바이러스의 하나인 BVDV의 viral replicon을 이용하여 다양한 종류의 포유동물 세포에 유전자 발현벡터로써 사용할 수 있음으로 post-genomics시대에 다양한 종류의 단백질 기능연구에 맡은 도움이 되리라 기대한다.다양한 기능을 가진 신소재 제조에 있다. 또한 경제적인 측면에서도 고부가 가치의 제품 개발에 따른 새로운 수요 창출과 수익률 향상, 기존의 기능성 안료를 나노(na

  • PDF

Fabrication and Characteristics of a Highly Sensitive GMR-SV Biosensor for Detecting of Micron Magnetic Beads (미크론 자성비드 검출용 바이오센서에 대한 고감도 GMR-SV 소자의 제작과 특성 연구)

  • Choi, Jong-Gu;Lee, Sang-Suk;Park, Young-Seok
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.5
    • /
    • pp.173-177
    • /
    • 2012
  • The multilayer structure of glass/Ta(5.8 nm)/NiFe(5 nm)/Cu(t nm)/NiFe(3 nm)/FeMn(12 nm)/Ta(5.8 nm) as typical GMR-SV (giant magnetoresistance-spin valve) films is prepared by ion beam sputtering deposition (IBD). The coercivity and magnetoresiatance ratio are increased and decreased for the decrease of Cu thickness when the thickness of nonmagnetic Cu layer from is varied 2.2 nm to 3.0 nm. It means that the decrease of non-magntic layer is effected to the interlayer exchange coupling of pinned layer and the spin configuration array of free layer. For experiment of detecting and dropping of magnetic beads we used the GMR-SV sensor with glass/Ta/NiFe/Cu/NiFe/FeMn/Ta structure. From the comparison of before and after for the dropping status of magnetic bead, the variations of MR ratio, $H_{ex}$, and $H_c$ are showed 0.9 %, 3 Oe, and 2 Oe, respectively. The fabrication of GMR-SV sensor was included in the process of film deposition, photo-lithography, ion milling, and MR measurement. Further, GMR-SV device can be easily integrated so that detecting biosensor on a single chip becomes possible.