Determination of Crystal Size and Microstrain of $CeO_2$ by Rietveld Structure Refinement

리트벨트 구조분석법에 의한 $CeO_2$의 결정크기 및 미세응력 결정

  • Hwang, Gil-Chan (Department of Earth and Environmental Sciences and Research Institute of Natural Sciences, Gyeongsang National University) ;
  • Choi, Jin-Beom (Department of Earth and Environmental Sciences and Research Institute of Natural Sciences, Gyeongsang National University)
  • 황길찬 (경상대학교 지구환경과학과, 경상대학교 기초과학연구소) ;
  • 최진범 (경상대학교 지구환경과학과, 경상대학교 기초과학연구소)
  • Published : 2008.06.30

Abstract

Ceria ($CeO_2$) becomes one of important functional nanomaterials and a key abrasive material for chemical-mechanical planarization (CMP) of advanced integrated circuits in silicon semi-conductor technology. Two synthetic crystalline ceria (RT735, RT835) are studied by the Rietveld structural refinement to determine crystallite size and microstrain. Rietveld indices of RT735 and RT835 indicate good fitting with $R_p(%)=8.50$, 8.34; $R_{wp}(%)=13.4$, 13.5; $R_{exp}(%)=11.3$, 11.5; $R_B(%)=2.21$, 2.36; S(GofF: Goodness of fit)=1.2, 1.2, respectively. $CeO_2$ with space group Fm3m show a=5.41074(2), 5.41130(6) ${\AA}$, V=158.406(1), 158.455(3)${\AA}^3$ in dimension. Detailed Rietveld refinement reveals that crystallite size and microstrain are 37.42(1) nm, 0.0026 (RT735) and 72.80(2) nm, 0.0013 (RT835), respectively. It also shows that crystallite size and microstrain of ceria are inversely proportional to each other.

최근 기능성 나노물질로서 반도체 공정 중 기계.화학적 평탄화(CMP)용 연마제로 중요하게 사용되는 세리아(Ceria, $CeO_2$)에 대해서 X-선 회절분석을 실시하여 리트벨트법에 의한 상세한 구조해석 및 세리아의 입자크기와 미세응력을 측정하였다. 두 시료(RT735. RT835)의 리트벨트 계산 결과 R지수 값은 각각 $R_p(%)=8.50$, 8.34; $R_{wp}(%)=13.4$, 13.5; $R_{exp}(%)=11.3$, 11.5; $R_B(%)=2.21$, 2.36; S(GofF: Goodness of fit)=1.2, 1.2를 보여주며 계산이 잘 이루어졌음을 알 수 있다. $CeO_2$는 공간군 Fm3m을 가지며, 격자상수는 a=5.41074(2), 5.41130(6) ${\AA}$, V=158.406(1), 158.455(3) ${\AA}^3$으로 각각 계산되었다. 입자크기 및 미세응력 계산 결과, RT735의 평균 입자크기와 최대 응력은 37.42(1) nm, 0.0026이며, RT835는 72.80(2) nm, 0.0013으로 각각 결정되었다. 입자크기와 미세응력은 서로 반비례함을 알 수 있다.

Keywords

References

  1. 이규종, 박병규, 이태근, 황연, 김철진, 최성철 (2000) 수열법에 의한 $CeO_2$ 분말 합성. 한국결정학회, 11, 52-57
  2. Balzar, D. and Popa, N.C. (2005) Analyzing microstructure by rietveld refinement. The rigaku journal, 22, 16-25
  3. Bondioli, F., Ferrari, A.M., Lusvarghi, L., and Manfredini, T. (2005) Synthesis and characterization of praseodymium-doped ceria powders by a microwave-assisted hydrothermal (MH) route. J. Mater. Chem., 15, 1061-1066 https://doi.org/10.1039/b415628e
  4. Brauer, G. and Gradinger, H. (1954) Die Oxydsysteme des Cers und des Praseodyms. Zeitschrift fur Anorganische und Allgemeine Chemie, 277, 89-95 https://doi.org/10.1002/zaac.19542770110
  5. Bumajdad, A., Zaki, M.I., Eastoe, J., and Pasupulety, L. (2004) Microemulsion-based synthesis of $CeO_2$ powders with high surface area and high-temperature stabilities. Langmuir, 20, 11223-11233 https://doi.org/10.1021/la040079b
  6. Corradi, A.B., Bondioli F., Ferrari A.M., and Manfredini T. (2006) Synthesis and characterization of nanosized ceria powders by microwave-hydrothermal method. Mater. Res. Bull., 41, 38-44 https://doi.org/10.1016/j.materresbull.2005.07.044
  7. Chen, H. and Chang, H.Y. (2005) Synthesis of nano-cyrstalline cerium oxide patricles by the precipitational method. Ceram. Int., 31, 795-802 https://doi.org/10.1016/j.ceramint.2004.09.006
  8. Feng, X., Sayle, D.C., Wang, Z.L., Paras, M.S., Santora, B., Sutorik, A.C., Sayle, T.X.T., Yang, Y., Ding, Y., Wang, X., and Her, Y.S. (2006) Converting ceria polyhedral nanoparticles into single-crystal nanospheres. Science, 312, 1504-1508 https://doi.org/10.1126/science.1125767
  9. Finger, L.W., Cox D.E., and Jephcoat, A.P. (1994) A correction for powder diffraction peak asymmetry due to axial divergence. J. Appl. Cryst. 27, 892-900 https://doi.org/10.1107/S0021889894004218
  10. Goldschmidt, V.M. and Thomassen, L. (1924) Crystal structure of natural and synthetic oxides of U, Th and Ce. Phys. Rev., 23, 763-764
  11. Hartridge, A. and Bhattacharya, A.K. (2002) Preparation and analysis of zirconia doped ceria nanocrystal dispersions. J. Phys. Chem. Solid, 63, 441-448 https://doi.org/10.1016/S0022-3697(01)00158-5
  12. Harwood, M.G. (1949) Variation in density and colour of cerium oxide. Nature, 164, 787-787
  13. Hirano, M., Fukuda, Y., Iwata, H., Hotta, Y., and Inagaki, M. (2000) Preparation and spherical agglomeration of crystalline cerium(IV) oxide nanoparticles by thermal hydrolysis. J. Am. Ceram. Soc., 83, 1287-1289 https://doi.org/10.1111/j.1151-2916.2000.tb01371.x
  14. Karen, P. and Woodward, P.M. (1998) Liquid-mix disorder in crystalline solids: $ScMnO_3$. J. Solid State Chemistry, 141, 78-88 https://doi.org/10.1006/jssc.1998.7918
  15. Kaspar, J., Fornasiero, P., and Graziani, M. (1999) Use of $CeO_2$-based oxides in the three-way catalysis. Catalysis Today, 50, 285-298 https://doi.org/10.1016/S0920-5861(98)00510-0
  16. Keijser, T.H.D., Mittemeijer, E.J., and Rozendaal, H.C.F. (1983) The determination of crystallite-size and lattice-strain parameters in conjunction with the profile- refinement method for the determination of crystal structures. J. Appl. Cryst., 16, 309-316 https://doi.org/10.1107/S0021889883010493
  17. Kodas, T.T. and Jampden-Smith, M.J. (1999) Aerosol Processing of Materials. John Wiley Sons
  18. Kummer, J.T. (1986) Use of noble metals in automobile exhaust catalysts. Am. Chem. Soc., 90, 4747-4752
  19. Li, G.R., Qu, D.L., Yu, X.L., and Tong, Y.X. (2008) Microstructural evolution of $CeO_2$ from porous structures to clusters of nanosheet arrays assisted by gas bubbles via elecrodeposition. Langmuir, 24, 4254-4259 https://doi.org/10.1021/la7037526
  20. Lopez-Navarrete, E., Caballero, A., and Gonzales-Elipe, A.R. (2002) Low-temperature preparation and structural characterisation Pr-doped ceria solid solutions. J. Mater. Res., 17, 797 https://doi.org/10.1557/JMR.2002.0117
  21. Maciel, A.P., Lisboa-Filho, P.N., Leite, E.R., Paiva-Santos, C.O., Schreiner, W.H., Maniette, Y., and Longo, E. (2003) Microstructural and morphological analysis of pure and Ce-doped tin dioxide nanoparticles. J. Euro. Ceram. Soc., 23(5), 707-713 https://doi.org/10.1016/S0955-2219(02)00190-5
  22. Mamontov, E. and Egami, T. (2000) Structural defects in a nano-scale powder of $CeO_2$ studied by pulsed neutron diffraction. J. Phys. Chem. of Solids, 61(8), 1345-1356 https://doi.org/10.1016/S0022-3697(00)00003-2
  23. Paiva-Santos, C.O., Gouveia, H., Las, W.C., and Varela, J.A. (1999) Gauss-Lorentz size-strain broadening and cell parameters analysis of Mn doped $SnO_2$ prepared by organic route. Materials Structure, 6, 111-114
  24. Post, J.E. and Bish, D.L. (1989) Rietveld refinement of crystal structures using powder X-ray diffraction data. In: Bish, D.L. and Post, J.E. (eds.) Modern Powder X-ray Diffraction. Chap. 9. Review in Mineral., 20, 277-308
  25. Rietveld, H.M. (1969) A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst., 2, 65-71 https://doi.org/10.1107/S0021889869006558
  26. Rodriguez-Carvajal, J. (2002) An Introduction to the Program Fullprof 2000 (Version July 2001) (PDF electronic manual) Laboratoire Leon Brillouin (CEA-CNRS), France
  27. Roisnel, T. and Rodriguez-Carvajal, J. (2002) Win-PLOTR, a Graphic Tool for Powder Diffraction (PDF electronic manual) Laboratoire Leon Brillouin (CEA-CNRS), France
  28. Ruedorff, W. and Valet, G. (1953) Uber das Ceruranblau und Mischkristalle im System $CeO_2-UO_2-U_3O_8$. Zeitschrift fur Anorgan. und Allgem. Chemie, 271, 257-272 https://doi.org/10.1002/zaac.19532710504
  29. Sakata, M. and Cooper, J.J. (1979) An analysis of the Rietveld profile refinement method. J. Appl. Crystal., 12, 554-563 https://doi.org/10.1107/S002188987901325X
  30. Scherrer. P. (1918) Bestimmung der Grosse und der inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen. Nachrichten der Akademie der Wissenschaften in Gottingen. II. Mathematisch-Physikalische Klasse, 2, 98
  31. Stokes, A.R. and Wilson, A.J.C. (1944) The diffraction of X-rays by distorted crystal aggregates-I. Proceedings of the Physical Society, 56(3), 174-181
  32. Shuk, P. and Greenblatt, M. (1999) Hydrothermal synthesis and properties of mixed conductors based on $Ce_{1-x}Pr_xO_{2-\delta}$ solid solutions. Solid State Ionics, 116, 217-223 https://doi.org/10.1016/S0167-2738(98)00345-2
  33. Taylor, D. (1984) Thermal expansion data: II. Binary oxides with the fluorite and rutile structures, $MO_2$, and the antifluorite structure $M_2O$, Transactions and J. British Ceram. Soc., 83, 33-37
  34. Thompson, P., Cox, D.E., and Hastings J.B. (1987) Rietveld refinement of Debye-Scherrer synchrotron X-ray data from $Al_2O_3$. J. Appl. Cryst., 20, 79-83 https://doi.org/10.1107/S0021889887087090
  35. Wang, Y., Mori, T., Li, J.G., and Ikegami, T. (2002) Low-temperature synthesis of praseodymium-doped ceria nanopowders. J. Am. Ceram. Soc., 85, 3105-3107 https://doi.org/10.1111/j.1151-2916.2002.tb00591.x
  36. Williamson, G.K. and Hall, W.H. (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica, 1(1), 22-31 https://doi.org/10.1016/0001-6160(53)90006-6
  37. Wolcyrz, M. and Kepinski, L. (1992) Rietveld refinement of the structure of CeOCl formed in Pd/$CeO_2$ catalyst: notes on the existence of a stabilized tetragonal phase of $La_2O_3$ in La-Pd-O system. J. Solid State Chemistry, 99, 409-413 https://doi.org/10.1016/0022-4596(92)90330-X
  38. Whitfield, H.J., Roman, D., and Palmer, A.R. (1966) X-ray study of the system $ThO_2-CeO_2-Ce_2O_3$. J. Inorganic and Nuclear Chemistry, 28, 2817-2825 https://doi.org/10.1016/0022-1902(66)80007-6
  39. Yabe, S.M., Yamashita, S., Yoshida, M., Hasegawa, S., and Sato, K. (1999) Kidorui. 36, 24-25
  40. Yashima, M., Ishimura, D., Yamaguchi, Y., Ohoyama, K., and Kawachi, K. (2003) High-temperature neutron powder diffraction study of cerium dioxide $CeO_2$ up to 1770 K. Chemical Physics Letters, 372(5-6), 784-787 https://doi.org/10.1016/S0009-2614(03)00507-4
  41. Yashima, M., Kobayashi, S., and Yasui, T. (2006) Crystal structure and the structural disorder of ceria from 40 to $1497^{\circ}C$. Solid State Ionics, 177(3-4), 211-215 https://doi.org/10.1016/j.ssi.2005.10.033
  42. Young R.A. (Ed.) (1993) The Rietveld Method. IUCr., Oxford, chap. 8, p. 146
  43. Zhang, F., Chan, S.W., Spanier, E., Apak, Q., and Jin, R.D. (2002) Cerium oxide nanoparticles: Size-selective formation and structure analysis. Appl. Phys. Lett., 80, 127 https://doi.org/10.1063/1.1430502