• Title/Summary/Keyword: 깊이 분할

Search Result 457, Processing Time 0.032 seconds

An Efficient Method to Combine PatchMatch-Based and Segmentation-Based Dense Depth Maps (패치매치 기반 및 분할 기반 조밀 깊이지도의 효율적인 결합 방법)

  • Hanshin Lim;Jeongil Seo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.161-163
    • /
    • 2022
  • 본 논문에서는 패치매치 기법 및 분할 기법의 조밀 깊이지도들의 효율적인 결합을 통해 기존의 패치매치 기반의 방법들이 낮은 깊이값 추정 정확도를 보인 영역들인 텍스처가 부족한 영역과 기존의 분할 기반 방법들이 깊이값 추정에 한계를 보인 세밀한 영역에서의 깊이값 추정 정확도를 동시에 높이고 고품질의 조밀 깊이지도를 얻는 것을 목표로 한다. 이를 위해 제안한 방법에서는 신뢰지도를 바탕으로 패치매치 기법의 조밀 깊이지도, 조밀 노말지도와 분할 기법의 조밀 깊이지도, 조밀 노말지도의 초기 결합 깊이지도 및 초기 결합 노말지도를 생성한다. 이후 각 픽셀에서 원래 픽셀과 주변 픽셀에서의 깊이값, 노말값들로 업데이트를 위한 후보들을 만든다. 이후 각각의 후보들에 대해서 깊이값, 노말값, 컬러값들을 바탕으로 비용을 계산한다. 이후 가장 최적의 비용을 가지는 후보값으로 각 픽셀의 깊이값과 노말값을 업데이트한다. 이를 통해 패치매치 기법 및 분할 기법의 조밀 깊이지도들의 장점을 합친 결합 조밀 깊이지도를 생성한다.

  • PDF

A Novel Segment Extraction and Stereo Matching Technique using Color, Motion and Initial Depth from Depth Camera (컬러, 움직임 정보 및 깊이 카메라 초기 깊이를 이용한 분할 영역 추출 및 스테레오 정합 기법)

  • Um, Gi-Mun;Park, Ji-Min;Bang, Gun;Cheong, Won-Sik;Hur, Nam-Ho;Kim, Jin-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12C
    • /
    • pp.1147-1153
    • /
    • 2009
  • We propose a novel image segmentation and segment-based stereo matching technique using color, depth, and motion information. Proposed technique firstly splits reference images into foreground region or background region using depth information from depth camera. Then each region is segmented into small segments with color information. Moreover, extracted segments in current frame are tracked in the next frame in order to maintain depth consistency between frames. The initial depth from the depth camera is also used to set the depth search range for stereo matching. Proposed segment-based stereo matching technique was compared with conventional one without foreground and background separation and other conventional one without motion tracking of segments. Simulation results showed that the improvement of segment extraction and depth estimation consistencies by proposed technique compared to conventional ones especially at the static background region.

키넥트를 이용한 색상 및 깊이 기반 영상 분할 기법

  • Kim, Yeong-Bae;Jang, Won-Dong;Kim, Chang-Su
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.11a
    • /
    • pp.106-107
    • /
    • 2015
  • 본 논문에서는 색상 및 깊이 기반 영상 분할 기법을 제안한다. 계층화된 영상 분할을 수행하기 위해서 색상을 기준으로 영상을 과분할 한 후, 과분할 영역의 깊이를 기준으로 영역 병합을 수행한다. 적은 개수의 화소로 이루어진 병합 영역을 제거하기 위해서 인접한 분할 영역 중 화소 수가 많은 영역에 병합시키는 이상영역 처리 기법을 수행한다. 제안하는 영상 분할 기법을 기존의 데이터셋 및 키넥트 취득 영상에 적용하여 신뢰도 높은 객체 단위 영상 분할이 이루어짐을 확인한다.

  • PDF

Depth map generation method using segmentation and motion information (영역분할과 움직임 정보를 이용한 깊이맵 생성 기법)

  • Kim, Su-Dong;Ahn, Jae-Woo;Seo, Young-Ho;Kim, Dong-Wook;Yoo, Ji-Sang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.116-118
    • /
    • 2010
  • 본 논문에서는 영역 분할과 영상의 움직임 정보를 이용한 깊이맵 생성에 관한 기법을 제안하였다. 2D/3D 변환 알고리즘에서 2차원 영상에서 얻은 깊이 정보는 2차원 영상을 3차원 영상으로 변환 가능하게 하는 핵심 기술이 된다. 영역을 분할하고 계산되어진 움직임 값 (intensity)을 분할된 각 영역에 부여함으로서 깊이맵을 얻을 수 있다. 본 논문에서는 초기 단계에서 영역을 분할한 뒤, 입력 영상을 그룹화 하여 양방향 탐색을 통한 움직임 추정 연산을 수행토록 하여 보다 정확한 깊이 정보를 획득하고, 최종적으로 얻은 결과에 각 화소에 해당 되는 확률적 통계에 의한 후처리 기법을 사용하였다. 보다 정확한 깊이정보를 영역별로 지정하고, 후처리 기법을 사용함에 따라 보다 신뢰도 높은 깊이맵 영상을 생성할 수 있었다.

  • PDF

Multi-Decoder DNN Model for High Accuracy Segmentation using Pseudo Depth-Map and Efficient Training Strategy (의사 깊이맵을 이용한 다중 디코더 기반의 고정밀 분할 딥러닝 모델 개발 및 효율적인 학습 전략)

  • Yu-Jin Kim;Dongyoung Kim;Jeong-Gun Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.727-730
    • /
    • 2024
  • 최근 딥러닝 기술이 급속히 발전하며 현대 사회의 다양한 응용분야에서 빠르게 적용되고 있다. 특히 영상 기반의 딥러닝 기술은 자연어 처리와 함께 인공지능 기술의 핵심 연구 분야로 많은 연구가 진행되고 있다. 논문에서는 최근 많은 연구가 진행되고 있는 영상의 의미적 분할 (Semantic Segmentation) 성능을 향상하기 위한 연구를 진행한다. 특히 모델에서 고정밀의 의미적 분할을 수행할 수 있도록 추가적인 정보로써 의사 깊이맵 (Pseudo Depth-Map)을 활용하는 방법을 제안하였다. 더불어, 의사 깊이맵을 모델 상에서 효과적으로 학습시키기 위하여 다중 디코더 모델과 학습 효율을 높이는 학습 스케줄링 전략을 제안한다. 의사 깊이맵과 다중 디코더 모델 기반의 제안 모델은 기존 의미적 분할 모델과 비교하여 iIoU 기준 2%의 성능 향상을 보였다.

A Depth Creation Method Using Frequency Based Focus/Defocus Analysis In Image (영상에서 주파수 기반의 초점/비초점 분석을 이용한 깊이 지도 생성 기법)

  • Lee, Seung Kap;Park, Young Soo;Lee, Sang Hun
    • Journal of Digital Convergence
    • /
    • v.12 no.11
    • /
    • pp.309-316
    • /
    • 2014
  • In this paper, we propose an efficient detph map creation method using Graph Cut and Discrete Wavelet Transform. First, we have segmented the original image by using Graph Cut to process with its each areas. After that, the information which describes segmented areas of original image have been created by proposed labeling method for segmented areas. And then, we have created four subbands which contain the original image's frequency information. Finally, the depth map have been created by frequency map which made with HH, HL subbands and depth information calculation along the each segmented areas. The proposed method can perform efficient depth map creation process because of dynamic allocation using depth information. We also have tested the proposed method using PSNR(Peak Signal to Noise Ratio) method to evaluate ours.

An analysis of TU split effect in HEVC encoding (초고해상도 부호화기의 최적화를 위한 TU 분할 효과 분석)

  • Wang, Heedon;Kim, Younhee;Kim, Jonghyuk;Jun, DongSan;Wee, Youngcheul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.180-183
    • /
    • 2011
  • 본 논문에서는 HEVC(High Efficiency Video Coding) 부호화기에서 사용되는 TU(Transform Unit) 분할이 깊이에 따라 속도와 화질과 압축률에 미치는 영향을 분석한다. 현재 HD 영상의 표준 부호화기로 사용되던 H.264/AVC 를 대신할 차세대 부호화기인 HEVC 에 대한 표준화 작업이 이루어지고 있으며 이러한 HEVC 부호화기의 특징 중 하나로 영상 압축 시 CU, PU, TU 로 세분화 된 단위를 사용한다는 점을 들 수 있다. HEVC의 reference software 인 HM 의 경우 기존 H.264/AVC 에 비하여 UHD 영상에서 최대 40%에 가까운 비트 절감률을 보이지만 최적화가 이루어지지 않아 실시간 부호화에는 적합하지 않은 속도를 보인다. HM 에서는 각 CU 나 TU 에 대하여 quadtree 형식으로 분할하여 부호화를 수행한 후 최적의 분할 형태를 취하는 방식을 사용하기 때문에 많은 시간을 소요하게 되며 분할되는 깊이에 비례하여 기하급수적으로 속도가 느려지게 된다. 본 논문에서는 TU 가 분할되는 깊이가 부호화 화질과 속도에 어느 정도 영향을 미치는지를 분석하고 화질 손상을 최소화 하는 최적의 TU 분할 깊이를 제안하여 보기로 한다.

  • PDF

A Study on Create Depth Map using Focus/Defocus in single frame (단일 프레임 영상에서 초점을 이용한 깊이정보 생성에 관한 연구)

  • Han, Hyeon-Ho;Lee, Gang-Seong;Lee, Sang-Hun
    • Journal of Digital Convergence
    • /
    • v.10 no.4
    • /
    • pp.191-197
    • /
    • 2012
  • In this paper we present creating 3D image from 2D image by extract initial depth values calculated from focal values. The initial depth values are created by using the extracted focal information, which is calculated by the comparison of original image and Gaussian filtered image. This initial depth information is allocated to the object segments obtained from normalized cut technique. Then the depth of the objects are corrected to the average of depth values in the objects so that the single object can have the same depth. The generated depth is used to convert to 3D image using DIBR(Depth Image Based Rendering) and the generated 3D image is compared to the images generated by other techniques.

The Generation of 3D Environment Model From a Single Image (한 장의 영상으로부터 3차원 환경 모델의 생성)

  • 류승택
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2004.05a
    • /
    • pp.696-699
    • /
    • 2004
  • 본 논문은 현실감 있는 영상 기반 환경 모델의 생성을 위해 영상 분할 기반 환경 모델링 방법을 제안한다. 입력 영상을 환경 특성에 따라 바닥면, 천정(하늘), 주변 물체들로 분할하고 분할된 바닥면이나 천정을 참조 평면으로 설정하고 주변 물체들의 깊이값을 계산함으로써 상세한 환경 모델을 얻을 수 있다. 영상 분할 환경 모델링 방법은 환경 맵에 적용하기 용이하며 환경의 특성에 따른 깊이값 추출 방법으로 손쉽게 환경 모델링이 가능하다. 또한, 시점이 이동되고 시차를 갖는 환경의 표현이 가능하다.

  • PDF

Color-Depth Combined Semantic Image Segmentation Method (색상과 깊이정보를 융합한 의미론적 영상 분할 방법)

  • Kim, Man-Joung;Kang, Hyun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.687-696
    • /
    • 2014
  • This paper presents a semantic object extraction method using user's stroke input, color, and depth information. It is supposed that a semantically meaningful object is surrounded with a few strokes from a user, and has similar depths all over the object. In the proposed method, deciding the region of interest (ROI) is based on the stroke input, and the semantically meaningful object is extracted by using color and depth information. Specifically, the proposed method consists of two steps. The first step is over-segmentation inside the ROI using color and depth information. The second step is semantically meaningful object extraction where over-segmented regions are classified into the object region and the background region according to the depth of each region. In the over-segmentation step, we propose a new marker extraction method where there are two propositions, i.e. an adaptive thresholding scheme to maximize the number of the segmented regions and an adaptive weighting scheme for color and depth components in computation of the morphological gradients that is required in the marker extraction. In the semantically meaningful object extraction, we classify over-segmented regions into the object region and the background region in order of the boundary regions to the inner regions, the average depth of each region being compared to the average depth of all regions classified into the object region. In experimental results, we demonstrate that the proposed method yields reasonable object extraction results.