• Title/Summary/Keyword: 기하 및 재료 비선형

Search Result 149, Processing Time 0.029 seconds

Inelastic Nonlinear Analysis of Plane Truss Structures Using Arc-Length Method (호장법을 이용한 평면 트러스 구조의 비탄성 비선형 해석)

  • Kim, Kwang-Joong;Baek, Ki-Youl;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.1
    • /
    • pp.41-48
    • /
    • 2008
  • Spatial structure is an appropriate shape that resists external force only with in-plane forte by reducing the influence of bending moment, and it maximizes the effectiveness of structure system. the spatial structure should be analyzed by nonlinear analysis regardless static and dynamic analysis because it accompanys large deflection for member. To analyze the spatial structure geometrical and material nonlinearity should be considered in the analysis. In this paper, a geometrically nonlinear finite element model for plane truss structures is developed, and material nonlinearity is also included in the analysis. Arc-length method is used to solve the nonlinear finite element model. It is found that the present analysis predicts accurate nonlinear behavior of plane truss.

  • PDF

Geometric and Material Nonlinear Analysis of Single Layer Dome using ABAQUS (유한요소 해석을 이용한 단층 래티스 돔의 비선형비탄성 해석)

  • Kim, Yeon-Tae;Jeong, Mi-Roo;Lee, Jae-Hong
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.119-124
    • /
    • 2008
  • Space structure is a appropriate shape that resists external force only with in-plane force by reducing the influence of bending moment, and it maximizes the effectiveness of structure system. The space structure should be analized by nonlinear analysis regardless static and dynamic analysis because it accompanies large deflection for member. To analyze the structure of the space structure exactly generally geometrically nonlinear and material nonlinear, complex nonlinear analysis are considered. To settle the weakness that geometric nonlinear problem does not consider nonlinear as per trait and position of the structure material and that the nonlinear matter of structure material also does not consider nonlinear as per geometric form. Therefore, In this paper, analysis is considered geometric nonlinear and material nonlinear simultaneous conditioning, and traced load-deflection curve by using ABAQUS which is the general purpose of the finite element program.

  • PDF

Ultimate Analysis of Prestressed Concrete Cable-Stayed Bridges (프리스트레스트 콘크리트 사장교의 극한해석)

  • Lee, Jae Seok;Kang, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.85-98
    • /
    • 1993
  • A method of analysis for the material and geometric nonlinear analysis of planar prestressed concrete cable-stayed bridges including the time-dependent effects due to load history, creep, shrinkage, aging of concrete and relaxation of prestress is described. The analysis procedure, based on the finite element method, is capable of predicting the response of these structures through elastic, cracking, inelastic and ultimate ranges. The nonlinear formulation for the description of motion is based on the updated Lagrangian approach. To account for the material nonlinearity, nonlinear stress-strain relationship and cracking of concrete, nonlinear stress-strain relationships of reinforcing steel, prestressing steel, and cable, including load reversal are given. Results from a numerical examples on ultimate analyses of cable-stayed bridges are presented to illustrate the analysis method.

  • PDF

Material and Geometric Nonlinear Analysis of Plane Structure Using Co-rotational Fiber-section Beam Elements (동시회전의 화이버 단면 보 요소를 이용한 평면 구조물의 재료 및 기하 비선형 해석)

  • Kim, Jeongsoo;Kim, Moon Kyum
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.3
    • /
    • pp.255-263
    • /
    • 2017
  • This paper presents a beam element capable of conducting material and geometric nonlinear analysis for applications requiring the ultimate behavioral analysis of structures with composite cross-sections. The element formulation is based on co-rotational kinematics to simulate geometrically nonlinear behaviors, and it uses the fiber section method to calculate the stiffness and internal forces of the element. The proposed element was implemented using an in-house numerical program in which an arc-length method was adopted to trace severe nonlinear responses(such as snap-through or snapback), as well as ductile behavior after the peak load. To verify the proposed method of element formulation and the accuracy of the program that was used to employ the element, several numerical studies were conducted and the results from these numerical models were compared with those of three-dimensional continuum models and previous studies, to demonstrate the accuracy and computational efficiency of the element. Additionally, by evaluating an example case of a frame structure with a composite member, the effects of differences between composite material properties such as the elastic modulus ratio and strength ratio were analyzed. It was found that increasing the elastic modulus of the external layer of a composite cross-section caused quasi-brittle behavior, while similar responses of the composite structure to those of homogeneous and linear materials were shown to increase the yield strength of the external layer.

A Study on Connection Ductility of Steel Structures Subjected to Monotonic Loading (단조하중을 받는 철골구조물의 접합부 연성도에 관한 연구)

  • Kang, Suk-Bong;Kim, Jin-Hyoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.4 s.47
    • /
    • pp.375-385
    • /
    • 2000
  • The required connection ductility has been evaluated, considering geometric, material and connection nonlinearity, for 6-story unbraced and 20-story braced steel structures subjected to ultimate lateral load. For material nonlinearity, section moment-curvature relationship and member stiffness matrix have been derived utilizing fiber model and linear flexibility distribution model. In 6-story structure with semi-rigid connections for rigid connection, the required connection ductility is less than that for rigid connection. In 20-story structure, the required connection ductility for semi-rigid connection is almost the same as that for shear connection and the required ductility for rigid connection is larger than that for semi-rigid or shear connection.

  • PDF

Modal Identification and Nonlinearity Assessment of Electric Cabinet for Improvement of Basic Fragility Variables (취약도변수의 개선을 위한 전기 캐빈비넷의 동특성 및 비선형성 평가)

  • 조양희;조성국;박형기
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.4
    • /
    • pp.83-91
    • /
    • 2000
  • 합리적인 기기의 활률론적 지진위험도 평가를 위해서는 모델의 동특성에 대한 보다 현실적인 정보가 제공되어야 한다. 이 연구에서는 심한 비선형 동적 거동을 보일 것으로 예상되는 철제 전기 캐비넷의 동특성 시험결과 및 분석 절차를 제시하였다. 특히, 이 연구에서는 가진 강도의 크기에 따른 동특성의 비선형 집중분석하고, 그 비선형성의 원인을 고찰하였다. 시험 결과 및 이 논문에 제시된 분석 절차를 이용하여 시험체의 동특성이 효과적으로 도출될 수 있으며, 대상 시험체는 가진 강도에 따라 심한 비선형 거동을 함을 입증하였다. 비선형성의 원인은 일반적인 재료 비선형이라기 보다는 각 부품들의 마찰력과 기하학적인 비선형성에 기인함을 발견하였다. 또한, 캐비넷 형식의 기긱에 대한 합리적인 내진안전성 평가를 위해서는 각 방향별로 서로 다른 감쇠값을 적용할 것을 추천하였다. 또한, 캐비넷 형식의 기기에 대한 합리적인 내진안전성 평가를 위해서는 각 방향별로 서로 다른 감쇠값을 적용할 것을 추천하였다.

  • PDF

Optimization of direct design system of semi-rigid steel frames using advanced analysis and genetic algorithm (고등해석과 유전자 알고리즘을 이용한 반강접 강뼈대 구조물의 직접설계시스템의 최적화)

  • Choi, Se Hyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.707-716
    • /
    • 2006
  • The optimization of the direct design system of semi-rigid steel frames using advanced analysis and genetic algorithm was presented. Advanced analysis can predict the combined nonlinear effects of connection, geometry, and material on the behavior and strength of semi-rigid frames. Geometric nonlinearity was determined using stability functions. On the other hand, material nonlinearity was determined using the Column Research Council (CRC) tangent modulus and parabolic function. The Kishi-Chen power model was used to describe the nonlinear behavior of semi-rigid connections. The genetic algorithm was used as the optimization technique. The objective function was assumed as the weight of the steel frame, with the constraint functions accounting for load-carrying capacities, deflections, inter-story drifts and ductility requirement. Member sizes determined by the proposed method were compared with those derived using the conventional method.

Stability Analysis for CWR on the Railway Bridges by Linearized Method (선형해석법을 이용한 교량상 장대레일의 안정성 해석 방법 연구)

  • Choi, Young-Gil;Oh, Ju-Won
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.472-480
    • /
    • 2009
  • The stability analysis for CWR is difficult in the theory itself because both geometric and material nonlinearity should be considered. Also the analysis results are varied according to the loading history. In contrast to the complexity in the theory, the analysis results for CWR on the railway bridges are quite simple and can be predicted because of a small buckling effect and its negligible nonlinearity. In this study, refined nonlinear analysis methods for the stability analysis of CWR on the railway bridges were developed which consider only material nonlinearity beeause the effects of geometric nonlinearity are nominal. In this study, the analysis results can be found within limited number of iterations with idealized linear force-displacement relationship. From the analysis result comparisons, it was found that the stability analysis for CWR on the railway bridges can be performed effectively by this method.

New Constitutive Models for Tensile/Compressive Nonlinear Elastic Behaviors of Composite Materials with Fiber Waviness (굴곡진 보강섬유를 가진 복합재료의 인장/압축 비선형 거동을 예측하기 위한 새로운 해석모델의 개발에 관한 연구)

  • 전홍재;신재윤;최흥섭
    • Composites Research
    • /
    • v.12 no.1
    • /
    • pp.59-67
    • /
    • 1999
  • The effects of fiber waviness on tensile/compressive nonlinear elastic behaviors of graphite/epoxy unidirectional composite materials are studied theoretically and experimentally. New constitutive models are proposed to predict elastic properties and tensile/compressive nonlinear behaviors of composite materials. Three types of wavy pattern are considered: uniform, graded and localized fiber waviness. Complementary energy density and incremental method are used to incorporate the material and geometrical nonlinearities due to fiber waviness. Tensile/compressive tests are conducted on the specimens with fiber waviness. It is found that the predictions are in good agreement with the experimental results.

  • PDF

Inelastic Nonlinear Analysis of Arch Truss and Space Truss Structures (아치 트러스 및 공간 트러스 구조의 비탄성 비선형 거동해석)

  • Kim, Kwang-Joong;Jung, Mi-Roo;Kim, Yeon-Tae;Baek, Ki-Youl;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.5
    • /
    • pp.47-58
    • /
    • 2008
  • Spatial structure is an appropriate shape that resists external force only with in-plane force by reducing the influence of bending moment, and it maximizes the effectiveness of structural system. With this character of the spatial structure, generally long span is used. As a result, large deflection is accompanied from the general frame. the structure is apt to result in a large deflection even though this structure experiences a small displacement in absence. Usually, nonlinear analysis in numerical analysis means geometric nonlinearity and material nonlinearity and complex nonlinearity analysis considers both of them. In this study, nonlinear equation of equilibrium considering geometric nonlinearity as per finite element method was applied and also considered the material nonlinearity using the relation of stress-strain in element. It is applied to find unstable result for tracing load-deflection curve in the numerical analysis tech. especially Arc-length method, and result of the analysis was studied by ABAQUS a general purpose of the finite element program. It is found that the present analysis predicts accurate nonlinear behavior of plane and space truss.

  • PDF