Optimization of direct design system of semi-rigid steel frames using advanced analysis and genetic algorithm

고등해석과 유전자 알고리즘을 이용한 반강접 강뼈대 구조물의 직접설계시스템의 최적화

  • 최세휴 (경북대학교 토목공학과)
  • Received : 2006.07.12
  • Accepted : 2006.09.20
  • Published : 2006.12.27

Abstract

The optimization of the direct design system of semi-rigid steel frames using advanced analysis and genetic algorithm was presented. Advanced analysis can predict the combined nonlinear effects of connection, geometry, and material on the behavior and strength of semi-rigid frames. Geometric nonlinearity was determined using stability functions. On the other hand, material nonlinearity was determined using the Column Research Council (CRC) tangent modulus and parabolic function. The Kishi-Chen power model was used to describe the nonlinear behavior of semi-rigid connections. The genetic algorithm was used as the optimization technique. The objective function was assumed as the weight of the steel frame, with the constraint functions accounting for load-carrying capacities, deflections, inter-story drifts and ductility requirement. Member sizes determined by the proposed method were compared with those derived using the conventional method.

본 논문에서는 고등해석과 유전자 알고리즘을 이용한 반강접 강뼈대 구조물의 직접설계시스템의 최적화를 수행하였다. 고등해석은 접합부의 비선형, 기하학적 비선형 및 재료적 비선형을 고려한다. 기하학적 비선형은 안정함수를 사용하여 고려하였으며, 재료적 비선형은 CRC 접선 탄성계수와 포물선 함수를 사용함으로서 고려하였다. 접합부의 비선형은 Kishi와 Chen이 제안한 3가지 매개변수를 가지는 파워모델을 사용하여 고려하였다. 최적화 기법으로는 유전자 알고리즘을 사용하였다. 목적함수는 구조물의 중량을 사용하였으며, 제약조건식은 구조시스템의 하중-저항능력, 처짐, 층간 수평변위 및 연성요구 조건을 고려하였다. 제안된 방법에 의한 설계결과를 기존의 방법들과 비교하였다.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단

References

  1. 김승억, 마상수 (2003) 유전자 알고리즘을 이용한 비선형 비탄 성 최적설계, 대한토목학회 논문집, 대한토목학회, 제23권 5A호, pp.841-850
  2. 박문호, 김승억, 최세휴 (2000) 3차원 강뼈대 구조물의 실용적 인 고등해석기법 개발, 대한토목학회 논문집, 대한토목학 회, 제20권 1-A호, pp.69-76
  3. 윤영묵, 김병헌 (2004) 2차 비탄성해석과 유전자 알고리즘을 이용한 평면 강골조 구조물의 최적설계, 대한토목학회 논문집, 대한토목학회, 제24권 1-A호, pp.87-100
  4. AISC (1993) Load and resistance factor design specification, 2nd ed., AISC, Chicago
  5. Chen, W.F. and Kim, S.E. (1997) LRFD steel design using advanced analysis, CRC Press, Boca Raton, Florida
  6. CSA (1994) Limit states design of steel structures, CAN/CAS -S16.1-M94, Canadian Standards Association
  7. De Jong, K.A. (1975) An analysis of the behavior of a class of genetic adaptive systems, Doctorial dissertation, The University of Michigan, Ann Arbor, Michigan
  8. ECCS (1984) Ultimate limit state calculation of sway frames with rigid joints, Technical Committee 8-Structural stability technical working group 8.2-System publication No. 33, p.20
  9. ECCS (1991) Essentials of Eurocode 3 design manual for steel structures in building, ECCS-Advisory Committee 5, No. 65, p.60
  10. Kim, S.E. and Chen, W.F. (1996a) Practical advanced analysis for braced steel frame design, J. Struct. Eng., ASCE, 122(11), pp. 1266-1274 https://doi.org/10.1061/(ASCE)0733-9445(1996)122:11(1266)
  11. Kim, S.E. and Chen, W.F. (1996b) Practical advanced analysis for unbraced steel frame design, J. Struct. Eng., ASCE, 122(11), pp. 1259-1265 https://doi.org/10.1061/(ASCE)0733-9445(1996)122:11(1259)
  12. Kish, N. and Chen, W.F. (1990) Moment-rotation relations of semi-rigid connections with angles, J. Struct. Eng., ASCE, 116, 7, pp. 1813-1834 https://doi.org/10.1061/(ASCE)0733-9445(1990)116:7(1813)
  13. Krishnakumar, K. (1989) Micro-genetic algorithms for stationary and non-stationary function optimization, SPIE, Intelligent Control and Adaptive Systems, Vol. 1196
  14. Liew, J.Y. and Tang, L.K., (1998) Nonlinear refined plastic hinge analysis of space frame structures, Research Report No. CE027/98, Department of Civil Engineering, National University of Singapore, Singapore
  15. Lin, C.Y. and Hajela, P., (1992) Genetic algorithm in optimization problem with discrete and integer design variables, Engng. Optim., 19, pp.309-327 https://doi.org/10.1080/03052159208941234
  16. Orbison, J.G., (1982) Nonlinear static analysis of three-dimensional steel frames, Report No. 82-6, Department of Structural Engineering, Cornell University, Ithaca, New York
  17. Pantelides C.P. and Tzan S.R. (1997) Optimal design of dynamically constrainted structures, Comput. Struct., 62, pp.141-149 https://doi.org/10.1016/S0045-7949(96)00243-X
  18. Pezeshk, S., Camp, C.V. and Chen, D. (2000) Design of nonlinear framed structures using genetic optimization, J. Struct. Eng., ASCE, 126(3), pp.382 -388 https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(382)
  19. Rajeev, S. and Krishnammorthy, C.S. (1992) Discrete optimization of structures using genetic algorithms, J. Struct. Eng., ASCE, 118, pp.1233 -1250 https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1233)
  20. Ryu, Y.S., Kim, J.H., Cho, H.M., and Kim, J.K. (2002) LRFD based design optimization of steel box girder sections using genetic algorithm, KSCE, Vol. 6, No 2, pp. 127-134 https://doi.org/10.1007/BF02829129
  21. Standards Australia (1990) AS4100-1990, Steel structures, Sydney, Australia