• Title/Summary/Keyword: 기초 탐구기능

Search Result 72, Processing Time 0.018 seconds

A Case Study on Development and Application of the Explicit Teaching and Learning Strategy for Comprehension of the Middle School Students' Basic Science Process Skills (중학생의 기초 탐구 기능 이해를 위한 명시적 교수.학습 전략의 개발 및 적용 사례 분석)

  • Hong, Seok-Jun;Son, Yeon-A
    • Journal of The Korean Association For Science Education
    • /
    • v.31 no.4
    • /
    • pp.641-662
    • /
    • 2011
  • In this study, explicit Teaching and Learning strategy for middle school students were developed to improve basic science process skills. After applying these strategy in an actual class, the effects of Teaching and Learning strategy and change of students were analyzed. Explicit Teaching and Learning strategy to improve basic science process skills are developed based on analyzing preceding research. The use of application criteria for class of basic science process skills combined with explicit Teaching and Learning strategy, it is sought for the explicit instructional procedures of said skills. After analyzing the class in which explicit Teaching and Learning strategy were demonstrated, students reported that they were able to comprehend basic science process skills more effectively through the stages of explicit explaining and independent practice. The showing demonstration stage was heavily emphasized by the teacher in this class. Analysis of students' understanding degree about basic science process skills, most of them show positive outcome. Another analysis of ripple effect on daily life and other subjects, it is found that students could have the attitude to make use of science process skills for themselves. Through the result of study, it is found that explicit Teaching and Learning strategy that are developed from this study are an effective way to comprehension students' basic science process skills. Thus, continued study is needed to develop and spread explicit Teaching and Learning strategy of science process skills to be applicable in actual classes in secondary schools.

The Comparative Analysis of Science Process Skills and Teaching Methods in the 6th and the 7th Elementary School Science Curricula (제 6차와 7차 초등학교 과학과 교과서에 제시된 탐구기능과 교수-학습 방법의 비교 분석)

  • Choi, Sun-Young;Kang, Ho-Kam
    • Journal of The Korean Association For Science Education
    • /
    • v.22 no.4
    • /
    • pp.706-716
    • /
    • 2002
  • The purpose of this study was to compare and analyze the science process skills and teaching methods between the 6th and the 7th elementary school science textbooks. For this study, science textbooks and teacher's guidebooks from the 3rd to the 6th grade were analyzed. In this research the science process skills are divided by basic process skills(BPS) and integrated process skills(IPS). The BPS is composed of observing, classifying, measuring, predicting and inferring skill, which are 5 subcategories. The IPS is composed of problem cognition, formulating hypothesis, controlling variables, transforming data, interpreting data, drawing result, and generalization, which are 7 subcategories. The results found in the analysis of science process skills in the 6th and 7th science textbooks are as follows: 1. The percentage of the BPS was increased, but the IPS was decreased in the 7th than the 6th. 2. The percentage of the IPS was higher than the BPS in the 6th science textbooks, but the BPS was higher than IPS in lower grade and the IPS was higher than the BPS in higher grade in the 7th textbooks. 3. Observing and problem cognition skill were most dominant in the 6th and 7th science textbooks. 4. The percentages of observing(24.8%), classifying(5.4%), measuring(5.6%), inferring(6.0%) in the BPS and interpreting data(4.4%) in the IPS were increased, but predicting(3.8%), formulating hypothesis(0.5%), controlling variables( 1.8%), transforming data( 1.2%), drawing result(0.8%) and generalization(0.9%) skills were decreased in the 7th. And teaching methods suggested in the curriculum are as follows: the percentages of learning by observation(19.2%) and role play(0.1 %) were decreased, but learning by experiment(6.2%), learning by discussion(2.0%), learning by investigation(4.6%) and creative learning(6,4%) were increased in the 7th than the 6th. In conclusion, it was found that the basic process skills were emphasized in the 7th science textbooks than the 6th and the science process skills in the science textbooks of the 7th curriculum were distributed by the grade level of the elementary children.

Sub-Component Extraction of Inquiry Skills for Direct Teaching of Inquiry Skills (탐구 기능의 직접적 수업을 위한 탐구 기능 하위 요소 추출)

  • Lee, Eun-Ju;Kang, Soon-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.2
    • /
    • pp.236-264
    • /
    • 2012
  • The purpose of this study is to provide teachers with sub-components of inquiry skills and help them to give direct instructions on the skills to their students. Inquiry skills and strategies are considered by-products of science and inquiry instruction by most of the science teachers. On the other hand, much research shows that many students are not familiar with the way that they can use inquiry skills therefore direct instruction on the inquiry skills is needed. The lack of guidance on the sub-components for the inquiry skills, however, results in science teachers' ignorance of the inquiry skills. As shown in the previous studies which suggest that without teachers' guidance, students cannot acquire the intended skills, and it is necessary to inform science teachers of the necessity for direct instruction on the inquiry skills and strategy as well as give them the sub-components of the inquiry skills. On the basis of the results from the previous research on the inquiry skills, this study presents the sub-components of basic inquiry skills (observation, classification, measure, prediction, and reasoning) and integrated inquiry skills (problem recognition, hypothesis formulation, control of variables, data transformation, data interpretation, drawing conclusion, and generalization).

Analysis of inquiry activities in the life science chapters of middle school 'science' textbooks: Focusing on Science Process Skills and 8 Scientific Practices (중학교 과학교과서 생명과학 단원의 탐구 활동 분석: 과학탐구 기능과 8가지 과학 실천을 중심으로)

  • Kim, Mijung;Hong, Juneuy;Kim, Sung-Ha;Lim, Chae-Seong
    • Journal of Science Education
    • /
    • v.41 no.3
    • /
    • pp.318-333
    • /
    • 2017
  • In this study, we analyzed activities in life science chapters of middle school 'science' textbooks for the 2009 revised Korea national curriculum and examined the difference between the analysis based on scientific practices and the analysis based on inquiry skills. As a results, there was a lot of inquiry skills in the order of 'reasoning', 'observing', 'classification' in the all of grade. In scientific practices, 'data analysis and interpretation' and 'constructing explanations and devising problem solving' were biased. This shows that life science inquiry activities in middle school 'science' textbooks are lacking in diversity in scientific practice elements as well as inquiry skills, and that the goals of the activities are limited. In addition, through the interrelationships between scientific inquiry skills and scientific practice elements, we examined contents relevance in the transition from inquiry function center to scientific practice, and compared with the results of inquiry activities in textbook, The results of this study were matched monotonously due to the tendency to basic inquiry-data interpretation / basic inquiry-explanation. This comes from results of the lack of diversity in activities presented in middle school 'science' textbooks. In this study, it is suggested that efforts should be made to include diverse scientific practice elements in the process of realizing 2015 revised Korea national curriculum from the simple and diversity-less inquiry activity through analyzing the textbooks of the 2009 revised Korea national curriculum.

The Effect of Classes with Enhanced Science Process Skills on Inquiry Ability and Science Attitudes of Middle School Students (과학 탐구 기능을 강화한 수업이 중학생의 탐구 능력과 과학 태도에 미치는 효과)

  • Kim, Hyunry;Son, Junho
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.15 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • In a situation in which online classes were suddenly introduced due to COVID-19, there were many cases where learners did not properly learn science process skills that were not presented in the achievement standards for reasons such as reducing the number of class hours. It is difficult to expect positive science inquiry ability and science attitude from learners who have entered middle school without understanding the process skills. Therefore, in this study, the effect on science inquiry ability and science attitude was investigated by developing worksheets with enhanced process skills and applying it to learner-centered teaching linked online and offline. As a result, it was confirmed that there was a statistically significant positive difference between both. Based on this research, it is expected that students will pay attention to the process skills, which is the basis of science subjects, and continue to experience the process skills through learning-centered classes.

Comparative Analysis of Inquiry Activities on the Unit related 'Nutrition of Plants' in Middle School Science Textbooks by the 7th and 2007 Revision Curriculum (제7차와 2007 개정 교육과정의 중학교 과학 교과서 '식물의 영양' 관련 단원의 탐구활동 비교)

  • Oh, Young-Lin;Jeong, Eun-Young
    • Journal of Science Education
    • /
    • v.36 no.1
    • /
    • pp.35-48
    • /
    • 2012
  • The purpose of this study was to analyze inquiry activities in the middle school science textbooks focused on the unit 'Nutrition of Plants' of the 2007 revision curriculum and the corresponding unit 'The Structure and Function of Plants' of the 7th curriculum in terms of content, process and contexts of inquiries. The average number of the inquiry activities in the unit 'Nutrition of Plants' was 9.2, which was a 3.8 decrease than in the unit 'Structure and Function of Plants'. In the respective of process of the inquiry activities, 'observation' was most prevailing in the basic inquiry process and 'data interpretation' was most prevailing in the integrated inquiry process in both of the units. In the respective of the types and contexts of the inquiry activities, 'experiment/observation' was most prevailing and the percentage of the natural scientific contexts was larger in both of the units. In the unit 'Nutrition of Plants', the components of the integrated inquiry process and the percentage of personal contexts were larger than in the unit 'Structure and Function of Plants'. And simulation activities were newly presented and technical contexts and natural environmental contexts were included in the unit 'Nutrition of Plants'. This study makes a suggestion that a wider variety of inquiry activities should be included when new science textbooks are developed.

  • PDF

The Analysis of Group Inquiry Process by Inquiry Process Supporting Methods in Computer Supported Intentional Learning Environments (컴퓨터 지원 의도적 학습환경에서 탐구과정 지원방식에 따른 집단의 탐구과정 분석)

  • Kim, Jee-Il
    • The Journal of Korean Association of Computer Education
    • /
    • v.9 no.3
    • /
    • pp.47-65
    • /
    • 2006
  • For the purpose of analysis, the supporting methods for inquiry process is divided into 3 types; when CSILE supports low-level of basic inquiry process, when CSILE supports high-level of integrated inquiry process and when CSILE supports both low-level and high-level of inquiry process. Strauss and Corbin's(1998) grounded theory was used to analyze inquiry process of learning groups. 48 elementary school students in 6th grade participated in this study. Those participants were assigned into 3 groups and each group consisted of 16 students. Then, participants studied a retarded unit in science subject cooperatively for 4 weeks using CSILE program. Through this extensive experiment, 3 types of inquiry model was revealed.

  • PDF

The Development of Performance Scoring Rubrics for the Inquiry-Based General Chemistry Experiments (탐구적 일반화학실험 수행 평가 준거 개발)

  • Kang, Soon-Hee;Kim, Yang-Hyun;Park, Jong-Yoon
    • Journal of The Korean Association For Science Education
    • /
    • v.19 no.4
    • /
    • pp.507-515
    • /
    • 1999
  • This study is to develope the performance scoring rubrics for the inquiry-based experiments of general chemistry course in the college of education. Two types of analytic scoring rubrics have been developed for nine different experiments. The first one is to assess scientific process skills from the written experimental reports. These analytic scoring rubrics include seven process skills selected from the Lawson's 'creative and critical thinking skills' and other known process skills. The second one is to assess the individual manipulative skills and experimental attitudes through direct observations by the teacher. The content validity of all scoring rubrics was testified by six science educators. Also the inter-scorer reliability of analytic scoring rubrics administered on the students' experimental reports was examined. The correlation coefficient between the scores obtained from the experiments and those of the written test for theoretical knowledges was found to be r=.663(p <.01). From the variance($r^2$=.440), we would say indirectly that the 56% of this experimental assessment does not overlap with the theoretical knowledges test and assesses students' science process skills, manipulative skills, and attitudes.

  • PDF

A Suggestion of Cognitive Model of Scientific Creativity (CMSC) (과학적 창의성 모델의 제안 -인지적 측면을 중심으로-)

  • Park, Jong-Won
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.2
    • /
    • pp.375-386
    • /
    • 2004
  • Creative thinking alone can not lead to scientific creativity. Scientific knowledge and scientific inquiry skills are needed for scientific creativity. Focused only on cognitive aspect, I suggested a cognitive model of scientific creativity (CMSC) consisting of 3 components: thinking for scientific creativity, scientific knowledge contents, and scientific inquiry skills. Recently, many researchers have emphasized the various thinking for creativity as well as divergent thinking. Therefore, I suggested three types of creative thinking - divergent thinking, convergent thinking, and associational thinking - and discussed its rationale. Based on this model, an example of activity material for the scientific creativity was suggested. In the further research, based on CMSC, various activity types related to scientific creativity and concrete learning materials for scientific creativity will be developed.