• Title/Summary/Keyword: 기체

Search Result 4,146, Processing Time 0.038 seconds

Gas desorption species and quantity from the hot cathode ionization gauges (열음극 전리 진공게이지의 기체이탈 특성)

  • ;;;I. Arakawa
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.4
    • /
    • pp.201-206
    • /
    • 2003
  • A residual gas analyzer was used to study the outgassing behavior of stainless steel 304 chamber as a function of bake-out temperature up to $235 ^{\circ}C$ and to identify the gas species evolved during turn on and degassing of the three different types of hot cathode ionization gauges. It was found that $H_2O$, CO, and $H_2O$ were the dominent outgassing species in the vacuum chamber during bake-out but finally $H_2$ and CO(mass 28) persisted at room temperature. Dominant outgassing species were also $H_2$ and $H_2O$ while fuming on the ionizations and then $H_2$,$H_2O$ and CO were found to be the main species degassed gauges. It was appeared that the outgassing species and quantity were not agreed to the three different types of hot cathode ionization gauges.

고전압 펄스 시스템 '천둥'을 이용한 N2, SF6 및 혼합기체에서의 전기 방전 현상 연구

  • Byeon, Yong-Seong;Song, Gi-Baek;Hong, Yeong-Jun;Han, Yong-Gyu;Eom, Hwan-Seop;Choe, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.102-102
    • /
    • 2010
  • 수 Tera Watt급의 가속기 및 펄스파워 시스템은 다수의 스위치를 사용하고 있으며, 이와 같은 가속기 및 시스템의 성능은 기체방전 스위치의 성능에 직접적으로 관련되어 있다. 일반적으로 이와 같은 기체방전, 액체방전 고출력 스위치는 다목적으로 많은 연구와 개발에 응용되고 있다. 예를 들어 천둥 펄스전자빔 발생장치는 12개의 Marx gap 및 3개의 100 kV 펄스충전 전기트리거 gap을 가지고 있다. 기체 방전 또는 액체 방전 펄스 충전 갭 스위치의 음극에 펄스 고전압이 인가되면 이로 인하여 음극에서 전자빔이 발생한다. 내부에는 전자빔이 양극과 충돌하는 순간 양극표면에 플라스마가 형성된다. 이와 같은 플라스마 sheath는 축 방향 이극관 안에서 양극충전 에서 음극으로 팽창하면서 전파하며, 또한 거의 동시에 음극표면에도 플라스마가 형성되어 음극에서 양극으로도 팽창하여 전파하게 된다. 이와 같은 펄스충전 고출력 갭 스위치 안에서 발생되는 방전 플라스마의 특성에 관한 갭 breakdown 과정에 대한 특성연구를 한다. 고출력스위치의 특성 조건으로는 방전전압, 방전시간, jitter 등이 있다. 본 연구에서는 최대전압 600 KV, 최대전류 88 KA, 펄스 폭 60 ns의 특성을 가지는 고전압펄스 시스템 '천둥'을 이용하여 방전 챔버에 고전압 펄스를 인가하고 N2와 SF6 혼합기체 종류와 압력에 따른 방전 현상을 연구하였다. 전극은 구리텅스텐 합금재질의 표준전극을 사용하였고, 전극 간격은 20 mm로 고정하였다. 방전 챔버 압력을 100 torr에서 4 기압까지 변화시켜가며 실험을 진행하였고, N2에 대한 SF6의 혼합비율을 0%~100%까지 변화시키며 실험을 진행하였다. 방전 챔버에는 C-dot probe와 B-dot probe를 설치하여 전압과 전류를 측정하였고, C-dot probe 와 B-dot probe는 각각 Northstar사의 10000:1 고전압 probe와 rogowiski coil을 이용하여 시준 하였다. 실험결과 방전전압은 압력이 증가함에 따라 증가하다가 2 기압 이상에서는 완만히 증가하는 경향을 보였고, SF6 혼합비율은 0~10%까지 급격히 증가하고, 그 이상의 혼합비율에서는 완만히 증가하였다. 방전개시시간은 혼합기체 압력에 따라 증가하며 1기압 이상에서는 급격히 증가 하였다. SF6 혼합비율에 따라서는 1 기압 조건까지는 큰 차이가 없었으나 2 기압부터는 급격히 증가하였다. 안정성을 나타내는 jitter는 SF6 100%일 때 가장 컸으나 혼합기체의 변화에 따른 큰 차이는 없었다.

  • PDF

Propylene/Propane Separation Through Polyimides Containing Bulky Ethyl Substituents (부피가 큰 치환기를 포함하는 폴리이미드의 합성 및 프로필렌/프로판 분리특성)

  • Yoo, Seung Yeon;Park, Ho Bum
    • Membrane Journal
    • /
    • v.30 no.6
    • /
    • pp.450-459
    • /
    • 2020
  • Membrane-based separations have the potential to reduce energy consumption and environmental impact associated with conventional processes. However, many researches have been done to develop new membrane materials with greater selectivity and permeability. Here, we report highly selective membranes by introducing bulky ethyl substituents into the polyimide. The ethyl group in the ortho position to the imide nitrogen interferes the chain packing and increases chain stiffness and the distance between the polymer chains. The polyimide membranes were synthesized from various aromatic dianhydrides and 4,4'-methylenebis(2,6-diethylaniline) (MDEA). The synthesized membranes with increased gas diffusion length due to bulky substituents showed improved propylene/propane (C3H6/C3H8) selectivity. Single gas permeation showed high C3H6/C3H8 selectivity of 14.5, and C3H6 permeability of 7.0 barrer was found in MDEA-polyimide. Mixed-gas permeation results also demonstrate that MDEA-polyimide can achieve high selectivity in mixed-gas environment. Furthermore, this approach could significantly increase the feasibility of economic propylene separation compared to conventional polymer materials.

Recovery of Ammonia Nitrogen using Gas-permeable Membranes (기체투과막을 이용한 암모니아성 질소 회수방안)

  • Lee, Sang-hun;Chae, Sang Yeop
    • Membrane Journal
    • /
    • v.32 no.3
    • /
    • pp.191-197
    • /
    • 2022
  • Ammonia nitrogen can be effectively recovered from livestock manure waste, etc. by using the gas permeable membrane technology. In this case, ammonia gas in the waste passes through the pores in one-side of membrane, impregnated in waste, and then reach the opposite side of the membrane. The permeated ammonia gas molecules are captured and recovered by acid (such as sulfuric acid) in the solution existing on the opposite side of the membrane. In order to improve ammonia nitrogen removals in the inlet part, high pH should be maintained in the feed waste including ammonia nitrogen to recover, which requires the cost of the chemical. To resolve this issue, previous studies tested various methods, for example, utilization of cheap calcium hydroxide or aeration together with inhibition of unwanted nitrification. The gas permeable membranes used for the recovery of ammonia nitrogen may be characterized, not only by proper heat and chemical resistance, but also by hydrophobicity, allowing selective ammonia gas permeation through the hydrophobic membrane pores. Future research should consider the relevant pilot or upscale processes using on-site wastes with various properties, and identify the optimal design/operation conditions as well as economic feasibility improvement plans.

Helicopter Active Airframe Vibration Control Simulations Using an Exhaustive Test Method (Exhaustive 시험 기법을 이용한 헬리콥터 능동 기체 진동 제어 시뮬레이션)

  • Park, Byeong-Hyeon;Lee, Ye-Lin;Park, Jae-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.11
    • /
    • pp.791-800
    • /
    • 2022
  • The number and locations of force generators and their force directions of Active Vibration Control System(AVCS) are important to maximize the airframe vibration reduction performance of helicopters. The present AVCS simulation using an exhaustive test method attempts to determine the best number and locations of force generators and their force directions for maximization of the airframe vibration reduction performance of UH-60A helicopter at 158 knots. The 4P hub vibratory loads of the UH-60A helicopter are calculated using DYMORE II, a nonlinear multibody dynamics analysis code, and MSC.NASTRAN is used to predict the vibration responses of the UH-60A airframe. The AVCS framework with an exhaustive test method is constructed using MATLAB Simulink. As a result, when applying AVCS with the optimal combination of the force generators, the 4P airframe vibration responses of UH-60A helicopter are reduced by from 19.35% to 98.07% compared to the baseline results without AVCS.

Gas Separation Properties and Their Applications of High Permeable Amorphous Perfluoropolymer Membranes (고투과성 무정형 불소고분자 불리막의 기체분리 특성 및 응용)

  • Freeman, Benny D.;Park, Ho-Bum
    • Membrane Journal
    • /
    • v.17 no.2
    • /
    • pp.81-92
    • /
    • 2007
  • Membrane-based separation processes are receiving increasing attention in the scientific community and industry since they provide a desirable alternative to processes that are not easy to achieve by conventional separation technologies. In particular, gas separation using polymeric membranes have annually grown so fast owing to advantages such as easy installation, no moving parts, small footprint and low energy process. The key element is definitely a polymer membrane exhibiting high permeability and high selectivity to compete with other gas separation technologies. Current polymer membranes used for commercial gas separation are a family of hydrocarbon polymers for hydrogen separation, air separation and carbon dioxide separation from natural gas sweetening. Relatively, gas or vapor separation properties of fluoropolymers are not known so much as compared with those of hydrocarbon polymers. Accordingly, in this study, membranes prepared from amorphous perfluoropolymers are of particular interest because of the unique properties of these polymers. The advantages offered by these amorphous perfluoropolymers for use in gas and vapor separation will be discussed. In addition, membrane properties and separation performance will be compared with other membranes available on the market.

A Study on Effects of Axial Gas Flow in the Gap and Fuel Cracking on Fission Gas Release under Power Ramping (출력 감발 조건하에서 핵분열 기체 생성물의 방출에 대한 축방향 기체 유동과 핵연료 파손의 영향에 관한 연구)

  • Han, Jin-Kyu;Yoon, Young-Ku
    • Nuclear Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.116-127
    • /
    • 1990
  • The fission gas release model used In the SPEAR-BETA fuel performance code was modified by use of effective thermal conductivity for cracked fuel and by laking Into account axial fission-gas mixing between the fuel-clad gap and the plenum. With use of this modified model the fission gas release was analyzed under various power ramping conditions of P$_{max}$ and $\Delta$.fP. Effective fuel thermal conductivity that accounts for the effect of fuel tracking was used in calculation of the fuel temperature distribution and the Internal gas pressure under power ramping conditions. Mixing and dilution effects due to axial gas flow were also considered in computing the width and the thermal conductivity of the gap. The effect of axial gas flow w3s solved by the Crank-Nicholson method. The finite difference method was used to save running time in the calculation. The present modified fission-gas release model was validated by comparing its predicted results with experimental data from various lamping tests In the literature and calculated results with use of the models used In the SPEAR-BETA and FEMAXI-IV codes. Results obtained with use of the present modified model showed better agreement with experimental data reported in the literature than those results with use of the latter codes. The fuel centerline temperature calculated with introduction of effective thermal conductivity for centerline temperature calculated with Introduction of effective thermal conductivity for cracked fuel was 200 higher fission gas release predicted with use of the modified model was nearly 6% larger on the average than that calculated by use of the unmodified model used in the SPEAR-BETA code.e SPEAR-BETA code.e.

  • PDF

Properties and Gas Permeability of PEBAX Composite Membrane Containing GO (GO를 함유한 PEBAX 복합막의 성질과 기체투과도)

  • Lee, Seul Ki;Hong, Se Ryeong;Lee, Hyun Kyung
    • Membrane Journal
    • /
    • v.28 no.4
    • /
    • pp.233-242
    • /
    • 2018
  • To study gas membrane using GO (graphene oxide), the PEBAX [poly(ether-block-amide)]-GO polymer composite membrane was prepared by adding GO to PEBAX. Through this composite membrane, gas permeation characteristics for $H_2$, $N_2$, $CH_4$, and $CO_2$ were studied. As a result of the gas permeation test, the permeability of $N_2$, $CH_4$, and $CO_2$ to PEBAX-GO composite membranes gradually decreased as the GO content increased. On the other hand, the gas permeability of $H_2$ increased with the increase of GO content, and it was 21.43 barrer at the GO content of 30 wt%, which was about 5 times higher than that of PEBAX membrane. This is because the GO was easier to operate with a fast and selective gas transport channel for $H_2$ than other gases. The increased selectivity ($H_2/N_2$) and selectivity ($H_2/CH_4$) were influenced by the diffusion selectivity by the permeate gas size. The increased selectivity ($CO_2/N_2$) and selectivity ($CO_2/CH_4$) were more influenced by the solubility selectivity due to the affinity of $CO_2$ and GO for -COOH.

Effects of Gas Injection on the Recovery of Copper Powder from Industrial Waste Water in Fluidized - Bed Electrolytic Reactors (유동층 전극반응기에서 기체의 유입이 산업폐수로부터 동입자의 회수에 미치는 영향)

  • Song, Pyung-Seob;Son, Sung-Mo;Kang, Yong;Kim, Seung-Jai;Kim, Sang Done
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.485-490
    • /
    • 2005
  • Effects of gas injectino on the copper recovery form industrial waste water in a fluidized-bed electrolytic reactor were investigated. Effects of gas injection on the individual phase holdup and efficiency of copper recovery for given operating variables such as liquid and gas velocity (0.1~0.4 cm/s), current density ($2.0{\sim}3.5A/dm^2$) and amount of fluidized solid particles (1.0~4.0 wt%) were examined. The solid particle, whose diameter and swelling density were 0.5 mm and $1100kg/m^3$, respectively, was made of polystylene and divinyl benzene. It was found that the holdup of gas and solid phases increased, but that of the liquid phase decreased with increasing velocity of gas injected into the reactor. With increasing gas and/or liquid velocity and increasing amount of fluidized particles is not needed, the rate of copper recovery increased to a maximum value of and subsequently decreased. The recovery rate of copper increased almost linearly with increasing current density in accordance with Faraday's law.