• Title/Summary/Keyword: 기온예측

Search Result 661, Processing Time 0.029 seconds

Relativeness between Growth and Bio-informations of Aeroponically Grown Tomato as Influenced by Spray Intervals of Nutrient Solution (양액의 분무간격에 따른 분무경재배 토마토의 생장 및 생체정보와의 관련성)

  • 정순주;소원온;지전영남;영목방부
    • Journal of Bio-Environment Control
    • /
    • v.1 no.2
    • /
    • pp.154-161
    • /
    • 1992
  • This experiment was carried oui to determine the relativeness between growth, yield characters and bio-informations as influenced by the spray and rest time intervals of nutrient solution. Tomato(Lycopersicon esculentum Mill.) were grown in aeroponic system on a misting schedule of continuously 60 sec, 30 sec and 10 sec at 10 min intervals with full strength Yamazaki's solution recommended for tomato production. The results obtained were as follows : 1. Leaf area was highest in the plot of 30 sec spray and 10 min rest while the forest one was the plot of 60 sec spray and 10 min rest. Growth characteristics in terms of dry weight of each organ, number of flower, number of flower setted and fruit dry weight were greater in the plot of 30 sec spray and 10 min rest than the other treatments. 2. The number of flower increased with decreasing dry weight but number of flower sorted was not significantly different among treatment except for the plot of 60 sec spray and 10 min rest. 3. Leaf dry weight and fruit dry weight were highly correlated so that 30 sec spray and 10 min rest plot which is the highest fruit dry weight showed the largest leaf area. Continuously sprayed plot reduced markedly the fruit dry weight compared with leaf area. Optimum spray and rest time of nutrient solution in the range of this experiment was determined as 30 sec spray and 10 min rest. 4. Solar radiation within glasshouse during daytime reduced severely compared with outdoor one and air temperature within greenhouse was higher than the leaf temperature of tomato plant. The changes of environmental factors, solar radiation, temperature were accompanied with the sensitive change of bio-informations of tomato leaf Especially differences of spray intervals of nutrient solution affected greatly to the changes of bio-informations : leaf water potential, stomatal resistance and leaf temperature etc. 5. The changing patterns of leaf growth as influenced by the spray and rest intervals of nutrient solution were closely related to the leaf water potential, stomatal resistance and leaf temperature. Feasibility was demonstrated that measurement of bio-information of tomato leaf as influenced by the change of environmental factors could be expected to the amount of growth and fruit yield.

  • PDF

Techniques for Acquisition of Moving Object Location in LBS (위치기반 서비스(LBS)를 위한 이동체 위치획득 기법)

  • Min, Gyeong-Uk;Jo, Dae-Su
    • The KIPS Transactions:PartD
    • /
    • v.10D no.6
    • /
    • pp.885-896
    • /
    • 2003
  • The typws of service using location Information are being various and extending their domain as wireless internet tochnology is developing and its application par is widespread, so it is prospected that LBS(Location-Based Services) will be killer application in wireless internet services. This location information is basic and high value-added information, and this information services make prior GIS(Geographic Information System) to be useful to anybody. The acquisition of this location information from moving object is very important part in LBS. Also the interfacing of acquisition of moving object between MODB and telecommunication network is being very important function in LBS. After this, when LBS are familiar to everybody, we can predict that LBS system load is so heavy for the acquisition of so many subscribers and vehicles. That is to say, LBS platform performance is fallen off because of overhead increment of acquiring moving object between MODB and wireless telecommunication network. So, to make stable of LBS platform, in this MODB system, acquisition of moving object location par as reducing the number of acquisition of unneccessary moving object location. We study problems in acquiring a huge number of moving objects location and design some acquisition model using past moving patternof each object to reduce telecommunication overhead. And after implementation these models, we estimate performance of each model.

Freeze Risk Assessment for Three Major Peach Growing Areas under the Future Climate Projected by RCP8.5 Emission Scenario (신 기후변화시나리오 RCP 8.5에 근거한 복숭아 주산지 세 곳의 동해위험도 평가)

  • Kim, Soo-Ock;Kim, Dae-Jun;Kim, Jin-Hee;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.3
    • /
    • pp.124-131
    • /
    • 2012
  • This study was carried out to evaluate a possible change in freeze risk for 'Changhowon Hwangdo' peach buds in three major peach growing areas under the future climate projected by RCP8.5 emission scenario. Mean values of the monthly temperature data for the present decade (2000s) and the future decades (2020s, 2050s, 2080s) were extracted for farm lands in Icheon, Chungju, and Yeongcheon-Gyeongsan region at 1km resolution and 30 sets of daily temperature data were generated randomly by a stochastic process for each decade. The daily data were used to calculate a thermal time-based dormancy depth index which is closely related to the cold tolerance of peach buds. Combined with daily minimum temperature, dormancy depth can be used to estimate the potential risk of freezing damage on peach buds. When the freeze risk was calculated daily for the winter period (from 1 November to 15 March) in the present decade, Icheon and Chungju regions had high values across the whole period, but Yeongcheon-Gyeongsan regions had low values from mid-December to the end of January. In the future decades, the frequency of freezing damage would be reduced in all 3 regions and the reduction rate could be as high as 75 to 90% by 2080's. However, the severe class risk (over 80% damage) will not disappear in the future and most occurrences will be limited to December to early January according to the calculation. This phenomenon might be explained by shortened cold hardiness period caused by winter warming as well as sudden cold waves resulting from the higher inter-annual climate variability projected by the RCP8.5 scenario.

Species-specific Growth Responses of Betula costata, Fraxinus rhynchophylla, and Quercus variabilis Seedlings to Open-field Artificial Warming (거제수나무, 물푸레나무, 굴참나무 묘목의 실외 인위적 온난화에 대한 수종 특이적 생장 반응)

  • Han, Saerom;An, Jiae;Yoon, Tae Kyung;Yun, Soon Jin;Hwang, Jaehong;Cho, Min Seok;Son, Yowhan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.3
    • /
    • pp.219-226
    • /
    • 2014
  • Evaluation of tree responses to temperature elevation is critical for a development of forest management techniques coping with climate change. We conducted a study on the growth responses of Betula costata, Fraxinus rhynchophylla, and Quercus variabilis seedlings to open-field artificial warming. Artificial warming set-up using infra-red heater was built in 2012 and the temperature in warmed plots was regulated to be consistently $3^{\circ}C$ higher than that of control plots. The seeds of three species were sown, and the responses of growth, biomass allocation, and net photosynthetic rate of newly-germinated seedlings on the open-field artificial warming were determined. As a result, the growth responses of the seedlings differed with the species. B. costata showed decreases in the height to diameter ratio (H/D ratio), biomass, root weight to shoot weight ratio, and net photosynthetic rate. However, root collar diameter (RCD), height, biomass, and net photosynthetic rate of Q. variabilis were increased, while the response of F. rhynchophylla was rather obscure. There was no significant difference between warmed and control plots in seedling growth for 3 species in July, whereas, RCD, height, and H/D ratio of Q. variabilis were increased and H/D ratio of B. costata was decreased in November under warming. Species-specific growth responses to warming were similar to the species-specific responses of net photosynthetic rate and biomass allocation; therefore, net photosynthetic rate and biomass allocation might attribute to growth responses to warming. Besides, a relatively obvious response in autumn compared to summer might be affected by the phenological change following artificial warming. Species-specific responses of three deciduous species to warming in this study could be applied to the development of adaptive forest management policies to climate change.

Characteristic of Odorous Compounds Emitted from Livestock Waste Treatment Facilities Combined Methane Fermentation and Composting Process (메탄발효와 퇴비화 공정이 연계된 가축분뇨 처리시설에서 발생되는 악취물질 특성 조사)

  • Ko, Han Jong;Kim, Ki Youn;Kim, Hyeon Tae;Ko, Moon Seok;Higuchi, Takasi;Umeda, Mikio
    • Journal of Animal Science and Technology
    • /
    • v.50 no.3
    • /
    • pp.391-400
    • /
    • 2008
  • Odor management is significantly concerned with sustainable livestock production because odor nuisance is a primary cause for complaint to neighbors. This study was conducted to measure the concentration of odorous compounds, odor intensity, and odor offensiveness at unit process in animal waste treatment facility combined composting and methane fermentation process by an instrumental analysis and direct olfactory method. Ammonia, sulfur-containing compounds, and volatile fatty acid were analyzed at each process units and boundary area in summer and winter, respectively. Higher concentration of odorants occurred in the summer than in the winter due to high ambient temperature. The maximum concentration of odorants was detected in composting pile when mixed manure was being turned followed by inlet, curing, outlet, and screen & packing process. Highest concentration of detected odorous compounds was ammonia ranging from 3.4 to 224.7 ppm. Among the sulfur-containing compounds measured, hydrogen sulfide was a maximum level of 2.3 ppm and most of them exceeded reported odor detection thresholds. Acetic acid was the largest proportion of VFA generated, reaching a maximum of 51 to 89%, followed by propionic and butyric acid at 1.9 to 35% and 1.8 to 15%, respectively. Malodor assessment by a human panel appeared a similar tendency in instrumental analysis data. Odor quotient for predicting major odor-causing compounds was calculated by dividing concentrations measured in process units by odor detection thresholds. In the composting process, hydrogen sulfide, ammonia, dimethyl sulfide, and methyl mercaptan were deeply associated with odor-causing compounds, while the major malodor compounds in the inlet process were methyl mercaptan, hydrogen sulfide, and butyric acid.

Wintering Population Change of the Cranes according to the Climatic Factors in Cheorwon, Korea: Effect of the Snow Cover Range and Period by Using MODIS Satellite Data (기후요인에 의한 철원지역 두루미류 월동개체수 변화 - MODIS 위성영상을 이용한 눈 덮임 범위와 지속기간의 영향 -)

  • Yoo, Seung-Hwa;Lee, Ki-Sup;Jung, Hwa-Young;Kim, Hwa-Jung;Hur, Wee-Haeng;Kim, Jin-Han;Park, Chong-Hwa
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.3
    • /
    • pp.176-187
    • /
    • 2015
  • In this study, we hypothesized that the size of wintering crane population would change due to the climate factors. We assumed that wintering population size would differ by climate values in January, which is the coldest period in year. Especially, White-naped cranes were able to choose wintering site between Cheorwon and other alternative place where snow coverage had low influence, differing from Red crowned cranes. For this reason, we predicted the population size of White-naped cranes would fluctuate according to the extent of snow coverage in Cheorwon. Therefore we used snow coverage data based on MODIS and climate data from KMA (Korea Meteorological Administration) that are generally used. We analyzed the crane's population size in Cheorwon in January from 2002 to 2014. The temperature in the Cheorwon increased from 2002 to wintering period in 2007~ 2008 and went down, showing the lowest temperature in 2011~ 2012. With this phenomenon, warmth index showed the similar pattern with temperature. Amount of newly accumulated snow (the amount of snow that fallen from 0:01 am to 11:29 pm in a day) was low after 2002, but rapidly increased in 2010~ 2011 and 2011~ 2012. The area of snow coverage rapidly declined from 2002 to 2005~ 2006 but suddenly expanded in wintering period in 2009~ 2010 and 2010~ 2011. Wintering population size of the White-naped cranes decreased as snow coverage area increased in January and the highest correlation was found between them, compared to the other climatic factors. However, the number of individuals of Red crowned cranes had little relationship with general climate factors including snow cover range. Therefore it seems that population size of the Red crowned crane varied by factors related with habitat selection such as secure roosting site and area of foraging place, not by climatic factors. In multiple regression analysis, wintering population of White-naped cranes showed significant relationship with logarithmic value of snow cover range and its period. Therefore, it suggests that the population size of the White-naped crane was affected by snow cover range n wintering period and this was because it was hard for them to find out rice grains which are their main food items, buried in snow cover. The population size variation in White-naped cranes was caused by some individuals which left Cheorwon for Izumi where snow cover had little influence on them. The wintering population in Izumi and Cheorwon had negative correlation, implying they were mutually related.

Seasonal and Inter-annual Variations of Sea Ice Distribution in the Arctic Using AMSR-E Data: July 2002 to May 2009 (AMSR-E 위성 데이터를 이용한 북극해빙분포의 계절 변동 및 연 변동 조사: 2002년 7월 ~ 2009년 5월)

  • Yang, Chan-Su;Na, Jae-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.5
    • /
    • pp.423-434
    • /
    • 2009
  • The Arctic environment is sensitive to change of sea-ice distribution. The increase and decrease of sea ice work to an index of globe warming progress. In order to predict the progress of hereafter earth global warming, continuous monitoring regarding a change of the sea ice area in the Arctic should be performed. The remote sensing based on an artificial satellite is most effective on the North Pole. The sea ice observation using a passive microwave sensor has been continued from 1970's. The determination of sea ice extent and ice type is one of the great successes of the passive microwave imagers. In this paper, to investigate the seasonal and inter-annual variation of sea-ice distribution we used here the sea ice data from July 2002 to May 2009 around the Arctic within $60^{\circ}N$ for the AMSR-E 12.5km sea-ice concentration, a passive microwave sensor. From an early analysis of these data, the arctic sea-ice extent has been steadily decreasing at a rate of about 3.1%, accounting for about $2{\times}10^5\;km^2$, which was calculated for the sea-ice cover reaching its minimum extent at the end of each summer. It is also revealed that this trend corresponds to a decline in the multi-year ice that is affected mainly by summer sea surface and air temperature increases. The extent of younger and thinner (first-year) ice decreased to the 2007 minimum, but rapidly recovered in 2008 and 2009 due to the dramatic loss in 2007. Seasonal variations of the sea-ice extent show significant year-to-year variation in the seasons of January-March in the Barents and Labrador seas and August-October in the region from the East Siberian and Chukchi seas to the North Pole. The spatial distribution of multi-year ice (7-year old) indicates that the perennial ice fraction has rapidly shrunk recently out of the East Siberian, Laptev, and Kara seas to the high region of the Arctic within the last seven years and the Northeast Passage could become open year-round in near future.

Characteristics Analysis of Snow Particle Size Distribution in Gangwon Region according to Topography (지형에 따른 강원지역의 강설입자 크기 분포 특성 분석)

  • Bang, Wonbae;Kim, Kwonil;Yeom, Daejin;Cho, Su-jeong;Lee, Choeng-lyong;Lee, Daehyung;Ye, Bo-Young;Lee, GyuWon
    • Journal of the Korean earth science society
    • /
    • v.40 no.3
    • /
    • pp.227-239
    • /
    • 2019
  • Heavy snowfall events frequently occur in the Gangwon province, and the snowfall amount significantly varies in space due to the complex terrain and topographical modulation of precipitation. Understanding the spatial characteristics of heavy snowfall and its prediction is particularly challenging during snowfall events in the easterly winds. The easterly wind produces a significantly different atmospheric condition. Hence, it brings different precipitation characteristics. In this study, we have investigated the microphysical characteristics of snowfall in the windward and leeward sides of the Taebaek mountain range in the easterly condition. The two snowfall events are selected in the easterly, and the snow particles size distributions (SSD) are observed in the four sites (two windward and two leeward sites) by the PARSIVEL distrometers. We compared the characteristic parameters of SSDs that come from leeward sites to that of windward sites. The results show that SSDs of windward sites have a relatively wide distribution with many small snow particles compared to those of leeward sites. This characteristic is clearly shown by the larger characteristic number concentration and characteristic diameter in the windward sites. Snowfall rate and ice water content of windward also are larger than those of leeward sites. The results indicate that a new generation of snowfall particles is dominant in the windward sites which is likely due to the orographic lifting. In addition, the windward sites show heavy aggregation particles by nearby zero ground temperature that is likely driven by the wet and warm condition near the ocean.

The Quantity and Pattern of Leaf Fall and Nitrogen Resorption Strategy by Leaf-litter in the Gwangneung Natural Broadleaved Forest (광릉숲 천연활엽수림의 수종별 낙엽 현상과 질소 재전류 특성)

  • Kwon, Boram;Kim, Hyunseok;Yi, Myong Jong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.208-220
    • /
    • 2019
  • The seasonality of leaf fall has important implications for understanding the response of trees' phenology to climate change. In this study, we quantified the leaf fall pattern with a model to estimate the timing and speed of leaf litter according to species and considered the nutrient use strategy of canopy species. In the autumns of 2015 and 2016, leaf litter was collected periodically using 36 litter-traps from the deciduous forests in Gwangneung and sorted by species. The seasonal leaf fall pattern was estimated using the non-linear regression model of Dixon. Additionally, the resorption rate was calculated by analyzing the nitrogen concentration of the leaf litter at each collection time. The leaf litter generally began in early October and ended in mid-November depending on the species. At the peak time (T50) of leaf fall, on average, Carpinus laxiflora was first, and Quercus serrata was last. The rate of leaf fall was fastest (18.6 days) for Sorbus alnifolia in 2016 and slowest (40.8 days) for C. cordata in 2015. The nitrogen resorption rates at T50 were 0.45% for Q. serrata and 0.48% for C. laxiflora, and the resorption rate in 2015 with less precipitation was higher than in 2016. Since falling of leaf litter is affected by environmental factors such as temperature, precipitation, photoperiod, and $CO_2$ during the period attached foliage, the leaf fall pattern and nitrogen resorption differed year by year depending on the species. If we quantify the fall phenomena of deciduous trees and analyze them according to various conditions, we can predict whether the changes in leaf fall timing and speed due to climate change will prolong or shorten the growth period of trees. In addition, it may be possible to consider how this affects their nutrient use strategy.

Analysis of Environmental Factors and Change of Vascular Plant Species along an Elevational Gradients in Baekdansa, Mt. Taebaeksan National Park (태백산국립공원 백단사코스의 고도별 관속식물상 변화와 환경요인 분석)

  • An, Ji-Hong;Park, Hwan-Joon;Lee, Sae-rom;Seo, In-Soon;Nam, Gi-Heum;Kim, Jung-Hyun
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.4
    • /
    • pp.378-401
    • /
    • 2019
  • This study generated a list of plants in eight sections from the Baekdansa ticket office (874m) to Cheonjedan (1,560m) divided in the interval of 100m above sea level to examine the species diversity patterns and distribution changes of the vascular plants at different altitudes in Taebaeksan National Park. Four site surveys found a total of 385 taxa: 89 families, 240 genera, 345 species, 5 subspecies, 34 varieties, and 1 form. A result of analyzing the change of species diversity along elevational gradients showed that it decreased with increasing elevation and then increased from a certain section. A result of analyzing habitat affinity types showed that the proportion of forest species increased with increasing elevation. On the other hand, the ruderal species appeared at a high rate in the artificial interference section. A result of comparing the proportion of woody and herb plants showed that the woody plants gradually increased with elevation and rapidly decreased in the artificial interference section. On the other hand, the herb plants showed the opposite trend. A result of analyzing the change of distribution of species according to altitude with the DCA technique showed that the vascular plants were divided into three groups according to the elevation in order on the I axis with the boundaries at 900m and 1,300m above sea level. The arrangement of each stand from right to left along the altitude on the I axis with a significant correlation with warmth index (WI) confirmed that the temperature change along the altitude could affect the distribution of vascular plants, composition, and diversity. Therefore, the continuous monitoring is necessary to confirm ecological and environmental characteristics of vegetation, distribution ranges, changes of habitat. We expect that the results of this study will be used as the basic data for establishing the measurement measures related to the preservation of biodiversity and climate change.