• Title/Summary/Keyword: 기어 가공도

Search Result 214, Processing Time 0.029 seconds

Simulation of Enveloping Helical Gear Generation by Shaping Operation (헬리컬 인벨로핑 기어의 Shaping 가공 시뮬레이션)

  • Kim Hyung-Mo;Lee Ki-Yong;Lee Jae-Seol;Park Soon-Sub
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.253-254
    • /
    • 2006
  • In this investigation, the authors propose a novel method of Enveloping Helical gear generation by shaping operation and a math model to simulate its manufacturing process. The tooth geometry of the Enveloping Helical Gear is analytically determined by simulating the conjugate motion between the workpiece(Enveloping Helical gear) and cutting tool(shaper cutter) in the generation process. It is expected that such math modeling capability will give engineers an opportunity to correct manufacturing related issues in the design phase and thereby reduce the developing period.

  • PDF

A Study to improve dimensional accuracy of forged gear (단조기어 정밀도 향상을 위한 연구)

  • Lee, Y.S.;Jung, T.W.;Lee, J.H.;Cho, J.R.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.129-134
    • /
    • 2009
  • The dimension of forged part is different from that of die. Therefore, a more precise die dimension is necessarys to produce the precise part, considering the dimensional changes from forging die to final part. In this paper, both experimental and FEM analysis are performed to investigate the effect of several features including die dimension at each forging step and heat-treatment on final part accuracy in the closed-die upsetting. The dimension of forged part is checked at each stage as machined die, cold forged, and post-heat-treatment steps. The elastic characteristics and thermal influences on forging stage are analyzed numerically by the DEFORM-$2D^{TM}$. The effect of residual stress after heat-treatment on forged part could be considered successfully by using DEFOAM-$HT^{TM}$.

  • PDF

A Study on the Relation Between Backlash and Tooth Contact for Optimization of the Conical Gear Marine Gearbox (선박용 코니칼 기어 감속기의 최적화를 위한 백래쉬와 물림에 관한 연구)

  • Kang, Jai-Hwa;Zhang, Qi;Ahn, In-Hyo;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.52-60
    • /
    • 2011
  • Korea is the best country for ship-building. But nowadays, the speedboat and yacht are not mostly developed yet. For the sleek lines of ship, more innovative transmission system should be obtained in the ship industry. In general, marine transmissions often use the straight shafts and the helical gears. So it makes problem that engine-room requires large space. In this case, conical gear is the best solution for this. Until now, technology of conical gear is not generalized, but it will be increased more through many applications. So, in order to get conical gear design technology by ourselves, this thesis is conducted. This paper was written to gain useful information of marine gearbox design applied conical gear through the measurement of backlash, computer analysis and tooth contact test of helical conical involute gear pairs.

Contact Stress Analysis of Helical Gear for Turbo Blower (터보블로워용 헬리컬 기어의 접촉응력 해석)

  • Hwang, Seok-Cheol;Lee, Dong-Hyong;Park, Young-Chul;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.90-95
    • /
    • 2011
  • This paper presents the study on the contact stress analysis of a pair of mating helical gears for turbo blower during rotation. Turbo blowers need high speed rotation of impeller in structure and high rate gear ratio. The use of helical gear indicated that noise was an important problem when the application involves high speeds and large power transmission. An example is presented to investigate the variation of contact stress on a pair of mating gears with contact positions. The variation of contact stress during rotation is compared with the contact stress at the lowest point of single tooth contact(LPSTC) and AGMA Equation for contact stress. In this study, the gear design considering the contact stress on a pair of mating gear is more severe than that of AGMA standard.

Analysis of Tooth Surface Compressive Stress of Conical Involute Gear by Profile Modification (치형수정에 의한 코니칼 인볼류트 기어의 치면 압축응력 해석)

  • Kim, Junseong;Lee, Hyeonsu;Kim, Donguk;Lyu, Sungki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.5
    • /
    • pp.40-49
    • /
    • 2010
  • Conical involute gears are being used for marine gearboxes, automotive transmissions, and robots, and so on, but not much. As involute profile gear, conical involute gear not only can be engaged with spur and helical gear but also can be used for power transmission of parallel, crossed and skewed axis with small angle. Hence, conical involute gears are likely to develop in future. Through a study on the basic theory of conical involute gear, tooth surface compressive stress analysis was performed by using commercial modeling program, comparing before and after profile modification. As a result, it noticed that tooth profile modification is able to relieve more tooth surface compressive stress than before modification.

A Study on Design of Reducer Using Hypoid High Ratio Gear (하이포이드 하이레이셔 기어를 이용한 감속기 설계에 대한 연구)

  • Kim, Seongyong;Lee, Changwoo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.99-103
    • /
    • 2014
  • A hypoid gear is a type of spiral bevel gear whose axis does not intersect with the axis of the meshing gear. The size of a hypoid gear is compact and the ratio of contact is high; therefore, the noise is lower than in other types. Due to these characteristics, the hypoid gear is commonly used in manufacturing processes such as those of escalators and subway screen doors. The purpose of this paper is to develop a reducer using the hypoid gear. In order to check the stability of the proposed reducer, 3D modeling is carried out by CATIA, and a structural analysis is performed using FEM (a finite element method).

A Study on the Effect Influencing on the Performance of Air Plane by the Air Flow due to Landing Gear Configuration (랜딩기어 형상에 따른 공기 유동으로 인한 항공기 성능에 미치는 영향에 관한 연구)

  • Han, Moonsik;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.35-40
    • /
    • 2017
  • The aerodynamic performance of airplane is different according to the configuration of landing gear. As the drag becomes different according to this configuration, the flow stream of air must be smooth at taking off and landing. In this study, the configuration of landing gear was designed each in order to enhance the energy efficiency of airplane. Five models were compared in total at analysis. The magnitudes of drag and pressure became different and the air pressure of wake were changed due to the configuration. So, the air pressure due to the flow velocity and the air resistance happening at the rear can be estimated according to the configuration of landing gear. It is thought to improve the performance of airplane through the result of this study.

FEM Analyses of Hot Forging and Cold Sizing of a Spur Gear (스퍼어기어의 열간단조와 냉간사이징의 유한요소해석)

  • 박종진;이정환
    • Transactions of Materials Processing
    • /
    • v.5 no.2
    • /
    • pp.105-114
    • /
    • 1996
  • Recently, precision forging techniques are applied to manufacture spur gears. Compared to conventional machining, they produce parts of better mechanical properties and less residual stresses with a much higher production rate. In the present investigation a rigid-plastic three dimensional finite element method was applied to analyze hot forging and cold sizing of a spur gear by closed dies. The involute curve of a tooth profile was approximated by a circle close to the curve. Results of the analyses make it possible to predict local strengths of the gear die failure and an appropriate preform for cold sizing. It was found that the preform for cold sizing. It was found that the preform for the cold sizing is the most important because it determines whether the gears especially teeth can be successfully formed.

  • PDF

A Study on Durability of Seat Height Motor Gear by Angle (시트 하이트 모터 기어의 각도별 내구성에 관한 연구)

  • Han, Moonsik;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.18-23
    • /
    • 2019
  • In this study, structural and fatigue analyses of the motor gears that control the height of car seat were carried out at angles of $10^{\circ}$, $20^{\circ}$, and $30^{\circ}$. The study aims at examining which angle of the gear is superior in terms of effect on strength. In the structural and fatigue analyses, the force of 3136 N was applied to the gears, and the stress and deformation were obtained. As the analysis results, model B ($30^{\circ}$) is suggested to have the best strength and fatigue durability among the three models.

대형 베벨기어의 3차원 단조공정 및 단조 금형 설계

  • 정덕진;김정환;이종억;박세군
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.04a
    • /
    • pp.26-26
    • /
    • 1999
  • 가장 오래된 금속성형법 중의 하나인 열간 단조는 재결정온도-고상선(강재의 경우, 일반적으로는 1,200-l,28$0^{\circ}C$)의 온도로 재료를 가열하여 간단한 형상의 소재로부터 하나 또는 둘 이상의 공정을 통하여 최종제품을 생산해내는 소성가공법이며, 이것은 절삭 가공에 비하여 재료의 손실이 적으며, 생산속도가 빠르고 또한 단류선(flow line)의 방향으로 인장강도, 충격강도 등의 기계적 강도가 커야 할 필요가 있는 제품의 대량 생산에 적합한 가공법이다.

  • PDF