• Title/Summary/Keyword: 기어 가공도

Search Result 214, Processing Time 0.02 seconds

Structural analysis of a planetary gear carrier in the slewing reducer for tower crane (타워크레인 선회감속기용 유성기어 캐리어의 구조해석)

  • Cho, Seung-Je;Han, Jeong-Woo;Park, Young-Jun;Lee, Geun-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.1-7
    • /
    • 2014
  • In this paper the structural analysis of a planet carrier was carried out for the design optimization of a slewing reducer used in tower cranes. The stress changes of the planet carrier according to the tolerance of interference fit were investigated, and the strength was evaluated on the basis of the stress level. The analysis results showed that the tolerance of interference fit have an important influence on the stress level of the planet carrier. To guarantee the static safety of carrier, the tolerances of carrier pinhole and planet pin as well as loading level exerted on the planet carrier should be determined considered correctly.

An Upper-Bound Analysis for Closed-Die Forging of the Involute Spur Gears with Circular Arc Fillet (원호필렛-인벌류트 스퍼어 기어의 밀폐단조에 관한 상계해석)

  • Choi, J.C.;Hur, K.D.;Kim, C.H.;Choi, Y.
    • Transactions of Materials Processing
    • /
    • v.3 no.1
    • /
    • pp.97-109
    • /
    • 1994
  • Closed-die forging of the spur gears with circular are fillet has been analyses by using the upper-bound method. A kinematically admissible velocity field has been developed, wherein, the tooth profile consists of the involute curve and the circular arc fillet. In the analysis, the deformation regions have been divided into eight zones. A constant frictional stress has been assumed on the contacting surfaces Utilizing the formulated velocity field, numerical calculations have been carried out to investigate the effects of various parameters, such as module, number of teeth, addendum modification coefficient and friction factor, on the relative forging pressure of spur gears. As the result of numerical calculations, the relative forging pressure does not change so much against the variation of module. On the other hand, the relative forging pressure increases at the final filling stage as the addendum modification coefficient increases.

  • PDF

A Study on the Embodiment of a Transfer Case with High-Speed Reduction of the Planetary Gear Type Applied to Big Industrial Vehicles (대형 산업 차량에 적용되는 유성기어형 고감속 중간변속기 구현에 관한 연구)

  • Lee, Won-Kyu;Park, Se-Myoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.14-20
    • /
    • 2015
  • A high-speed reduction transfer case is usually employed by an excavator, wheel loader, or bulldozer. When powerful torque is required in the case of climbing steep roads or towing heavy equipment, the high-speed reduction mode of the gearbox is used. Generally, a transfer case using a spur gear type with a speed reduction system has a speed reduction ratio of 1 to 1 or 2 to 1. However, the structure of a transfer case achieved at a high speed of 1 to 1 and a low speed of 4.5 or under 5.5 to 1 with the speed reduction by use of a planetary gear type with a speed reduction system was proposed in this study. By employing a planetary gear type with a speed reduction system, the compact structure of the transfer case was achieved, and the impact or the partial defect of gear teeth was eliminated.

A Study on the Carburizing Treatment of SCM415 Steel Spur Gear (SCM415 스퍼기어의 침탄처리에 관한 연구)

  • Ahn, Min-Ju;Ahn, In-Hyo;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.1
    • /
    • pp.67-72
    • /
    • 2011
  • The main objective of this paper is obtaining the optimal carburizing hours which impacts geometric tolerances, OPD(Over Pin Diameter), runout, hardness and fatigure strength of SCM415 spur gear. In order to observe the deformation of the gear, the circularity, squareness, OPD(Over Pin Diameter) and runout were measured at 3hour, 4hour and 5hour respectively. As the result, the 3hour situation is the best, which very similar with the 4hour one. Afterwards, with the purpose of getting the result of gear hardness, the surface hardness, maximum hardness and interior hardness were measured. The result is 5h situation is the best, and it's similar with 4hour one. At last, the fatigue tests have been done which receive the result that the 4h situation showed 9~12% fatigue strength improvement compared with the 3h and 5h ones. To sum up the results, the 4hour situation shows the best performance in accuracy, hardness and fatigue strength.

Development of the Transfer Case for Power Distribution (동력분배용 중간변속기 개발에 관한 연구)

  • Sim, Ki-Joong;Moon, Hong-Ju;Lee, Youngchoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.95-102
    • /
    • 2018
  • This paper presents the development of the transfer case for a 3.5-ton commercial vehicle. A transfer case is composed of many parts, including helical gear, shaft, bearing, planetary gear, and others. Helical gears are currently used as power transmitting gears due to their relatively smooth and silent operation, large load carrying capacity, and operation at higher speeds. The key parameter in transfer case development is the bending stress at the root of a tooth in the helical gear. The bending stress of the helical gear has been studied through theoretical calculation and finite element method (FEM) analysis. Major factors of the bending stress calculation are determined according to American Gear Manufacturers Association (AGMA) standards, and FEM model analysis of the helical gear is conducted. FEM results are compared with theoretical calculations and the difference of the bending stress is described.

A Study on Optimization of Tooth Micro-geometry for a Helical Gear Pair (헬리컬 기어의 치형최적화에 관한 연구)

  • Zhang, Qi;Kang, Jae-Hwa;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.70-75
    • /
    • 2011
  • Nowadays, modern gearboxes are characterized by high torque load demands, low running noise and compact design. Also durability of gearbox is specially a major issue for the industry. For the gearbox which used in wind turbine, gear transmission error(T.E.) is the excitation that leads the tonal noise known as gear whine, and radiated gear whine is also the dominant source of noise in the whole gearbox. In this paper, tooth modification for the high speed stage is used to compensate for the deformation of the teeth due to load and to ensure a proper meshing to achieve an optimized tooth contact pattern. The gearbox is firstly modeled in Romax software, and then the various combination analysis of the tooth modification is presented by using Windows LDP software, and the prediction of transmission error under the loaded torque for the helical gear pair is investigated, the transmission error, contact stress, root stress and load distribution are also calculated and compared before and after tooth modification under one torque condition. The simulation result shows that the transmission error and stress under the loads can be minimized by the appropriate tooth modification.

Billet Treatment and Die Design for Net-Shape Forming of Gear by Cold Forging (정밀정형 냉간단조 기어성형을 위한 소재처리와 다이설계)

  • Kang K.G.J.;Park H.J.;Yun J.C.;Kim J.;Kang B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.87-90
    • /
    • 2004
  • In this paper, net-shape forming of an automobile gear is investigated. Barrel, a component of automobile start motor, is adopted as a net-shape forming. In order to accomplish the goal of net-shape forming without cutting of tooth and cam after forming, forming ability is raised through billet treatment and die design. As a technique of billet treatment spheroidizing annealing of billet to get low hardness and molybdenum disulphide coating to get low contact friction between billet and die is carried out. One of critical points of die design, fillet radii variation of tooth of die is applied to get smooth surface of barrel after cold forging. As a measurement of tooth accuracy, distance between two pins and lead-tooth alignments are investigated. Cam profile accuracy is checked with a 3D measuring instrument. Results obtained from the tests revealed reasonable result with respect to design goal. By these results, the paper shows that reasonable results can be obtained by billet treatment and die design for net-shape forming.

  • PDF

Development of Hardware-linked Simulation Platform for Automation Mechanism Training (자동화 메커니즘 교육을 위한 하드웨어 연동형 시뮬레이션 플랫폼 개발)

  • Kim, Hyun-Hee;Park, Sung-Su;Lee, Kyung-Chang;Hwang, Yeong-Yeun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.34-42
    • /
    • 2015
  • As the industry environment is changing to automated systems, engineering education at university has changed with industrial development. Industry technology will be developed, and the industry environment will become more complicated. Therefore, the knowledge that undergraduates have to acquire in university will be extensive. Industries need a person with expertise to react quickly to rapidly changing technology. Therefore, universities need to endeavor to cultivate manpower in technical fields. This is difficult because the contents of engineering education must react quickly to rapidly changing industry technology. This paper proposes a hardware-linked simulation platform for engineering education on the well-used systems in industrial sites.

The Evaluation of Cylindrical Gear Measurement on Teeth Roots and Bottom Profiles in Different Sections (원통기어의 다단면 치형 측정평가)

  • Moon, Sung-Min;Kang, Jae-Hwa;Kido, Hiromitsu;Kurokawa, Syuhei;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.46-49
    • /
    • 2012
  • Gears are reliable and efficient power transmission elements. They have been widely used in all kinds of machinery. Nowadays, resource conservation energy conservation environmental improvements from the request of the compact, light weight, high efficiency, low cost Higher efficiency is required. Tooth root and bottom profiles of cylindrical gears affect bending fatigue life, but they are hard to measure with conventional gear measuring machine(GMM), because GMM is normally customized to measure only gear working flanks. The authors try to develop a new type of GMM by installing an extra 3D scanning probe and control software to measure tooth root and bottom profiles. First, in order to measure in various directions, a 3D scanning probe has been attached to the GMM developed. Next, calibration algorithm has been developed. Deviations of the calibration results are measured and it is found that systematic error must be caused by heat from driving motors. A new alternative GMM with driving motors generating less heat was designed and two GMMs are compared. Finally, 3 Dimension measurement of tooth root and bottom profiles of cylindrical gears is described.

A Study on Components Load of 5MW Wind Turbine Pitch Drive (5MW 풍력용 Pitch Drive 구성품의 부하에 관한 연구)

  • Kim, Dong-Young;Lee, In-Bum;Liang, Long-Jun;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.1
    • /
    • pp.115-120
    • /
    • 2014
  • Wind power is a type of clean energy source which does not produce carbon dioxide. The wind turbine industry is considered as a major growth industry in many countries. The main cause of wind turbine failure arises in the wind turbine gearbox, and the main type of damage occurs in the bearings and gears. Therefore, predictions of gear and bearing damage are very important to ensure the reliability of the wind turbine reducers used in these systems. In this research, in order to optimize the wind turbine reducer, a series of simulations and redesigns was done using the tool RomaxDesigner. The RomaxDesigner model was used to analyze the bearing life of the duty cycle for a 5 MW wind-turbine pitch drive and to calculate the load in operating states. The reducer was designed to satisfy the life requirement by analyzing bearing damage and calculating the stress values of the main parts of the reducer.