• Title/Summary/Keyword: 기술 정보

Search Result 59,093, Processing Time 0.081 seconds

Development of an open source-based APT attack prevention Chrome extension (오픈소스 기반 APT 공격 예방 Chrome extension 개발)

  • Kim, Heeeun;Shon, Taeshik;Kim, Duwon;Han, Gwangseok;Seong, JiHoon
    • Journal of Platform Technology
    • /
    • v.9 no.3
    • /
    • pp.3-17
    • /
    • 2021
  • Advanced persistent threat (APT) attacks are attacks aimed at a particular entity as a set of latent and persistent computer hacking processes. These APT attacks are usually carried out through various methods, including spam mail and disguised banner advertising. The same name is also used for files, since most of them are distributed via spam mail disguised as invoices, shipment documents, and purchase orders. In addition, such Infostealer attacks were the most frequently discovered malicious code in the first week of February 2021. CDR is a 'Content Disarm & Reconstruction' technology that can prevent the risk of malware infection by removing potential security threats from files and recombining them into safe files. Gartner, a global IT advisory organization, recommends CDR as a solution to attacks in the form of attachments. There is a program using CDR techniques released as open source is called 'Dangerzone'. The program supports the extension of most document files, but does not support the extension of HWP files that are widely used in Korea. In addition, Gmail blocks malicious URLs first, but it does not block malicious URLs in mail systems such as Naver and Daum, so malicious URLs can be easily distributed. Based on this problem, we developed a 'Dangerzone' program that supports the HWP extension to prevent APT attacks, and a Chrome extension that performs URL checking in Naver and Daum mail and blocking banner ads.

Agrometeorological Early Warning System: A Service Infrastructure for Climate-Smart Agriculture (농업기상 조기경보시스템 설계)

  • Yun, Jin I.
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2014.10a
    • /
    • pp.25-48
    • /
    • 2014
  • Increased frequency of climate extremes is another face of climate change confronted by humans, resulting in catastrophic losses in agriculture. While climate extremes take place on many scales, impacts are experienced locally and mitigation tools are a function of local conditions. To address this, agrometeorological early warning systems must be place and location based, incorporating the climate, crop and land attributes at the appropriate scale. Existing services often lack site-specific information on adverse weather and countermeasures relevant to farming activities. Warnings on chronic long term effects of adverse weather or combined effects of two or more weather elements are seldom provided, either. This lecture discusses a field-specific early warning system implemented on a catchment scale agrometeorological service, by which volunteer farmers are provided with face-to-face disaster warnings along with relevant countermeasures. The products are based on core techniques such as scaling down of weather information to a field level and the crop specific risk assessment. Likelihood of a disaster is evaluated by the relative position of current risk on the standardized normal distribution from climatological normal year prepared for 840 catchments in South Korea. A validation study has begun with a 4-year plan for implementing an operational service in Seomjin River Basin, which accommodates over 60,000 farms and orchards. Diverse experiences obtained through this study will certainly be useful in planning and developing the nation-wide disaster early warning system for agricultural sector.

  • PDF

Study on On-Sight Image-Based Simulation Method for Predicting and Analyzing Flight Test Results of a Missile (유도무기의 비행시험 결과 예측 및 분석을 위한 현장 영상 기반 시뮬레이션 기법 연구)

  • Jeong, Dong-Gil;Park, Jin-Seo;Lee, Jong-Hee;Son, Sung-Han
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.3
    • /
    • pp.41-48
    • /
    • 2019
  • In modern-war campaign, precision-guided missiles are dominantly used to minimize the collateral damage. Imaging infrared seekers are widely applied for the precise guidance. Due to the high cost of the infrared detector, the cost for the one-shot weapon's test is a burden for the development. To reduce the test cost, a simulation method including imagery tracking is required, which is so-called integrated-flight simulation(IFS). The synthetic image generation(SIG)-based simulation method is typically used, which however cannot represent various environmental and target conditions. In this paper, a new IFS method is proposed using on-sight measured image to overcome the limitations of the SIG-based IFS(SIIFS). The target image acquired at the launching sight has been used only for checking the performance criteria of the image tracker and has not been tried for IFS since it has low resolution and little information. The study described in this paper, however, shows that the on-sight image-based IFS can predict the pre- and mid-course flight performance quite similarly and is very useful for the flight test analysis.

The Facets of Photographic Records on Korea in Modern Era (조선말과 대한제국 시기 사진기록물의 성격과 생산, 유통 과정)

  • Park, Ju Seok
    • The Korean Journal of Archival Studies
    • /
    • no.62
    • /
    • pp.225-258
    • /
    • 2019
  • Since the opening of Joseon in 1876, the photographic records of the late Joseon Dynasty and the period of the Korean Empire exist more than expected, considering the technological level and the social situations at that time. Photographs related to Korea can be distributed in various forms, such as illustrations of books printed to introduce Korea to Western society, plates of graphic journalism like newspapers or magazines, vintage prints, photo-postcards, stereo-photographs, card-type photographs, and lantern slides. There are still a great deal left in various archives of the Europe, America, Japan and Korea. According to related researchers, Korean-related photographs taken between 1863 and 1910, since Koreans were first photographed, were at least 3,000 to 4,000 cuts and the photo postcards issued was 25,000. It is said that most of them exist. This paper categorizes two ways of producing and distributing photographic records related to Korea, which were early modern times. The subjects of the photographs are clearly Korea or Koreans, but most of the producers of these photographs were Westerners and Japanese, who were imperial servants of imperialism. In the case of photography, there is a great possibility of distortion of the facts depending on the needs or perspectives of the producers. In order to correct the distortion, not only the contents of the photograph but also the intention of the producer, the production and the communication status should be grasped. This is because the problem of reading photograph records accurately and fairly in an age where there is no real experience is the cornerstone for understanding modern Korea correctly and broadly studying the Modern History of Korea.

Microbial Community Structures Related to Arsenic Concentrations in Groundwater Occurring in Haman Area, South Korea (함안지역 지하수의 비소(As) 함량과 미생물 군집 특성과의 연관성 검토)

  • Kim, Dong-Hun;Moon, Sang-Ho;Ko, Kyung-Seok;Kim, Sunghyun
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.655-666
    • /
    • 2020
  • This study evaluated the characteristics of arsenic production in groundwater through microbial community analysis of groundwater contaminated with high arsenic in Haman area. Groundwater in Haman area is contaminated with arsenic in the range of 0-757.2 ㎍/L, which represents the highest arsenic contamination concentration reported in Korea as natural groundwater pollution source. Of the total 200 samples, 29 samples (14.5%) showed higher arsenic concentration than that of 10 ㎍/L, which is the standard for drinking water quality, and 8 samples (4%) found in wells with 80-100 m depth were above 50 ㎍/L. In addition, seven wells with arsenic concentration more than 100 ㎍/L located in the northern part of Haman. As a result of microbial community analysis for high arsenic-contaminated groundwater, the microbial community compositions were significantly different between each sample, and Proteobacteria was the most dominant phyla with an average of 61.5%. At the genus level, the Gallinonella genus was predominant with about 12.8% proportion, followed by the Acinetobacter and Methermicoccus genus with about 7.8 and 7.3%, respectively. It is expected that high arsenic groundwater in the study area was caused by a complex reaction of geochemical characteristics and biogeochemical processes. Therefore, it is expected that the constructed information on geochemical characteristics and microbial communities through this study could be used to identify the origin of high arsenic groundwater and the development of its controlling technology.

A Study on Realistic Interface Elements for Improving the Flow in Screen Golf (스크린골프의 몰입 향상을 위한 실감 인터페이스 요소 연구)

  • Doo, Kyungil
    • Journal of Industrial Convergence
    • /
    • v.19 no.1
    • /
    • pp.71-77
    • /
    • 2021
  • Screen Golf provides a more realistic interface to users by implementing sophisticated sensors and 3D graphics so that they can play golf in an environment almost identical to the actual golf course, to provide a sense of reality that goes beyond simply enjoying golf indoors. In addition, users who experienced this interface environment showed a tendency to feel the fun of golf more and become more immersed in golf. Therefore, it is most important to provide an effective realistic interface in screen golf. In this study, the meaning of screen golf as a tangible sport and various interface elements embodied in screen golf were summarized. Also the factors that enable users to feel reality and fun of actual golf to make users more immersed in screen golf were identified. For this, interface elements based on sensory elements were arranged in terms of visual, auditory, and tactile sense, and improvement plans and directions for providing effective sensory interfaces for screen golf were suggested through user FGI, targeting regular customers of Golfzone and KakaoVX screen golf, and in-depth interviews with experts. As a result of the analysis, it was confirmed that the course information including the yardage and the play situation-directed graphic are elements that make immersion in the visual aspect. In terms of tactile aspect, the fact that users actually use golf equipment, as well as the sense of existence of a physical interface that embodies various course environments and course setting appeared to be an important factor. In particular, in the auditory aspect, it was confirmed that providing customized services for each user through AI caddy implemented to resemble a actual caddy is the most effective way to immerse users in screen golf with greater fun and realism.

A Study on the Use Smartphone of Radiological Technologist (방사선사의 스마트폰 이용에 관한 연구)

  • Jeong, Bong-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.915-922
    • /
    • 2020
  • This study analyzed the content of use Tendency and addiction according to smartphone use of targeting radiological Technologist working in Gyeongnam area. The tool used as the data for the study is a survey. From April 21 to May 31, 2019, a total of 330 questionnaires were distributed to radiological Technologist working at medical institutions in Gyeongnam, and 300 copies suitable for the study were SPSS/PC Ver 18.0 program for Analysis was performed using. The factors of the study subject's tendency to use smartphone were communication, information, leisure, and convenience. As for the addiction factors, a total of 37 questions were analyzed, including daily living disorder, virtual world orientation, tolerance, and withdrawal. Smartphone-related characteristics were set as monthly average fee, usage time, and SNS usage time, and technical statistics, t-test, ANOVA, correlation and regression analysis were performed. The radiological Technologist tendency to use smartphones was 3.10±.55 points, which was average, and smartphone addiction was 2.34±.62 points, which was lower than the average. It was found that there was a significant correlation between the radiological Technologist Tendency to use smartphone and addiction. The effect of radiological Technologist tendency to use smartphone on addiction it was found to account for 10.8%. Through this study, it can be said that it is important to analyze the addiction factors according to the tendency use smartphone of radiological Technologist and to prepare a desirable plan for smartphone use.

Research on the Construction of an Automation Model for Maintenance Managers Based on Smart Devices (스마트 디바이스 기반 유지보수 관리자용 자동화 모델 구축에 관한 연구)

  • Park, Jihwan;Chung, Suwan;Lee, Seojoon;Song, Jinwoo;Kwon, Soonwook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.1
    • /
    • pp.72-80
    • /
    • 2021
  • Based on the previous year's statistics, 37% of buildings in South Korea are aged over 30 years. As the number of the aging buildings increases, so does the need for maintenance. Building maintenance involves a significant number of works; the work of 'maintenance manager' accounting for the largest part. Currently, the maintenance history record is mostly in drawing or handwritten form which makes reviewing the data highly time consuming. Therefore, to improve the convenience of maintenance works and optimize historical data management, the existing maintenance process was analyzed. Problems were derived and a smart device-based automation model was established. In order to establish a smart device-based automation model, ① general flow of facility management process was analyzed and related articles were reviewed, ② current maintenance process was optimized, ③ functional block diagram of BIM Data, COBie Data, IoT, and AR-based automated maintenance management model was created, ④ a smart device-based automated maintenance management model was constructed, ⑤ finally, the above system was verified by testing the aforementioned model in the field site, evaluating the time required for the maintenance process and reviewing maintenance history data against the current one.

Field Validation of PBcast in Timing Fungicide Sprays to Control Phytophthora Blight of Chili Pepper (고추 역병 방제시기 결정을 위한 PBcast 예측모델 타당성 포장 평가)

  • Ahn, Mun-Il;Do, Ki Seok;Lee, Kyeong Hee;Yun, Sung Chul;Park, Eun Woo
    • Research in Plant Disease
    • /
    • v.26 no.4
    • /
    • pp.229-238
    • /
    • 2020
  • Field validation of PBcast, an infection risk model for Phytophthora blight of pepper, was conducted through a designed field experiment in 2012 and 2013. Conduciveness of weather conditions at 26 locations in Korea in 2014-2017 was also evaluated using PBcast. The PBcast estimated daily infection risk (IR) of Phytophthora capsici based on weather and soil texture data. In the designed filed experiment, four treatments including routine sprays at 7-day intervals (RTN7), forecast-based sprays when IR reached 200 (IR200) and 224 (IR224), and no spray (CTRL) were compared in terms of disease incidence and number of sprays recommended for disease control. In 2012, IR had reached over 200 twice, but never reached 224. In 2013, IR had reached over 200 three times and once higher than 224. The RTN7 plots were sprayed 17 and 18 times in 2012 and 2013, respectively. Weather conditions throughout the country were generally conducive for Phytophthora blight and 3-4 times of fungicide sprays would have been reduced if the PBcast forecast information was adopted in the decision-making for fungicide sprays. In conclusion, the PBcast forecast would be useful to reduce fungicide applications without losing the disease control efficacy to protect pepper crop from Phytophthora blight.

Iterative Precision Geometric Correction for High-Resolution Satellite Images (고해상도 위성영상의 반복 정밀 기하보정)

  • Son, Jong-Hwan;Yoon, Wansang;Kim, Taejung;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.431-447
    • /
    • 2021
  • Recently, the use of high-resolution satellites is increasing in many areas. In order to supply useful satellite images stably, it is necessary to establish automatic precision geometric correction technic. Geometric correction is the process that corrected geometric errors of satellite imagery based on the GCP (Ground Control Point), which is correspondence point between accurate ground coordinates and image coordinates. Therefore, in the automatic geometric correction process, it is the key to acquire high-quality GCPs automatically. In this paper, we proposed iterative precision geometry correction method. we constructed an image pyramid and repeatedly performed GCP chip matching, outlier detection, and precision sensor modeling in each layer of the image pyramid. Through this method, we were able to acquire high-quality GCPs automatically. we then improved the performance of geometric correction of high-resolution satellite images. To analyze the performance of the proposed method, we used KOMPSAT-3 and 3A Level 1R 8 scenes. As a result of the experiment, the proposed method showed the geometric correction accuracy of 1.5 pixels on average and a maximum of 2 pixels.