To build an efficient Question-Answering (QA) system, a question type classifier is needed. It can classify user's queries into predefined categories regardless of the surface form of a question. In this paper, we propose a question type classifier using a Support Vector Machine (SVM). The question type classifier first extracts features like lexical forms, part of speech and semantic markers from a user's question. The system uses $X^2$ statistic to select important features. Selected features are represented as a vector. Finally, a SVM categorizes questions into predefined categories according to the extracted features. In the experiment, the proposed system accomplished 86.4% accuracy The system precisely classifies question type without using any rules like lexico-syntactic patterns. Therefore, the system is robust and easily portable to other domains.
Journal of the Korean Society for information Management
/
v.22
no.3
s.57
/
pp.261-287
/
2005
The purpose of this paper is to explore the ways to improve the performance of SVM (Support Vector Machines) text classifier using inter-document similarities. SVMs are powerful machine learning systems, which are considered as the state-of-the-art technique for automatic document classification. In this paper text categorization via SVMs approach based on feature representation with document vectors is suggested. In this approach, document vectors instead of index terms are used as features, and vector similarities instead of term weights are used as feature values. Experiments show that SVM classifier with document vector features can improve the document classification performance. For the sake of run-time efficiency, two methods are developed: One is to select document vector features, and the other is to use category centroid vector features instead. Experiments on these two methods show that we can get improved performance with small vector feature set than the performance of conventional methods with index term features.
Subject classification of thesis units is essential to serve scholarly information deliverables. However, to date, there is a journal-based topic classification, and there are not many article-level subject classification services. In the case of academic papers among domestic works, subject classification can be a more important information because it can cover a larger area of service and can provide service by setting a range. However, the problem of classifying themes by field requires the hands of experts in various fields, and various methods of verification are needed to increase accuracy. In this paper, we try to classify topics using the unsupervised learning algorithm to find the correct answer in the unknown state and compare the results of the subject classification algorithms using the coherence and perplexity. The unsupervised learning algorithms are a well-known Hierarchical Dirichlet Process (HDP), Latent Dirichlet Allocation (LDA) and Latent Semantic Indexing (LSI) algorithm.
Integration of GIS data and human expert knowledge into digital image processing has long been acknowledged as a necessity to improve remote sensing image analysis. We propose inductive machine learning algorithm for GIS data integration and rule-based classification method for land cover classification. Proposed method is tested with a land cover classification of a Landsat ETM+ multispectral image and GIS data layers including elevation, aspect, slope, distance to water bodies, distance to road network, and population density. Decision trees and production rules for land cover classification are generated by C5.0 inductive machine learning algorithm with 350 stratified random point samples. Production rules are used for land cover classification integrated with unsupervised ISODATA classification. Result shows that GIS data layers such as elevation, distance to water bodies and population density can be effectively integrated for rule-based image classification. Intuitive production rules generated by inductive machine learning are easy to understand. Proposed method demonstrates how various GIS data layers can be integrated with remotely sensed imagery in a framework of knowledge base construction to improve land cover classification.
KIPS Transactions on Software and Data Engineering
/
v.2
no.12
/
pp.855-864
/
2013
Decision tree classification is one of the important problems in data mining fields and data minings have been important tasks in the fields of large database technologies. Therefore the coupling efforts of data mining systems and database systems have led the developments of database primitives supporting data mining functions such as decision tree classification. These primitives consist of the special database operations which support the SQL implementation of decision tree classification algorithms. These primitives have become the consisting modules of database systems for the implementations of the specific algorithms. There are two aspects in the developments of database primitives which support the data mining functions. The first is the identification of database common primitives which support data mining functions by analysis. The other is the provision of the extended mechanism for the implementations of these primitives as an interface of database systems. In data mining, some primitives want be stored in DBMS is one of the difficult problems. In this paper, to solve of the problem, we describe the database primitives which construct and apply the optimized decision tree classifiers. Then we identify the useful operations for various classification algorithms and discuss the implementations of these primitives on the commercial DBMS. We implement these primitives on the commercial DBMS and present experimental results demonstrating the performance comparisons.
Understanding dialogue participant's emotion is important as well as decoding the explicit message in human communication. It is well known that non-verbal elements are more suitable for conveying speaker's emotions than verbal elements. Written texts, however, contain a variety of linguistic units that express emotions. This study aims at analyzing components for constructing an emotion ontology, that provides us with numerous applications in Human Language Technology. A majority of the previous work in text-based emotion processing focused on the classification of emotions, the construction of a dictionary describing emotion, and the retrieval of those lexica in texts through keyword spotting and/or syntactic parsing techniques. The retrieved or computed emotions based on that process did not show good results in terms of accuracy. Thus, more sophisticate components analysis is proposed and the linguistic factors are introduced in this study. (1) 5 linguistic types of emotion expressions are differentiated in terms of target (verbal/non-verbal) and the method (expressive/descriptive/iconic). The correlations among them as well as their correlation with the non-verbal expressive type are also determined. This characteristic is expected to guarantees more adaptability to our ontology in multi-modal environments. (2) As emotion-related components, this study proposes 24 emotion types, the 5-scale intensity (-2~+2), and the 3-scale polarity (positive/negative/neutral) which can describe a variety of emotions in more detail and in standardized way. (3) We introduce verbal expression-related components, such as 'experiencer', 'description target', 'description method' and 'linguistic features', which can classify and tag appropriately verbal expressions of emotions. (4) Adopting the linguistic tag sets proposed by ISO and TEI and providing the mapping table between our classification of emotions and Plutchik's, our ontology can be easily employed for multilingual processing.
The analysis of hyperspectral characteristics of materials near the South Han River has been conducted using riverside area measurements by drone installed hyperspectral sensors. Each spectrum reflectance of the riverside materials were compared and analyzed which were consisted of grass, concrete, soil, etc. To verify the drone installed hyperspectral measurements, a ground spectrometer was deployed for field measurements and comparisons for the materials. The comparison results showed that the riverside materials had their unique hyperspectral band characteristics, and the field measurements were similar to the remote sensing data. For the classification of the riverside area, the K-means clustering method and SVM classification method were utilized. The supervised SVM method showed accurate classification of the riverside area than the unsupervised K-means method. Using classification and clustering methods, the inherent spectral characteristic for each material was found to classify the riverside materials of hyperspectral images from drones.
KIM, YOUNG OK;KIM, SUN YOUNG;CHOI, JUNGMIN;KIM, JAESEONG
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
/
v.26
no.3
/
pp.248-262
/
2021
Marine planktonic ciliates include two major groups, loricated tintinnids and naked oligotrichs. The study of marine ciliate plankton in Korea began with taxonomic efforts on tintinnids based on the morphology of lorica, a vase-shaped shell. Despite polymorphism in the lorica, it is utilized as a key characteristic in identification of tintinnid species. However, oligotrichs have been studied only recently in Korea due to challenges associated with the observation of ciliary arrangements and the technical development for cell staining. Species diversity and phylogenetic classification of the ciliates have been informed by recent advances in morphological and molecular analyses. Illustrations of the planktonic ciliate in Korea have been published on the basis of taxonomic data of tintinnids and oligotrichs. Planktonic ciliates acting as the major consumers of pico- and nanoplankton as well as the prey of mesozooplankton, has been monitored by spatial and temporal investigations in Korean coastal waters. A practical approach addressing the limitations and potential of marine ciliate studies in Korea is proposed here to improve the data quality of planktonic ciliates, providing an enhanced basis for quality control of ciliate monitoring.
Chung, Hyeonyong;Kim, Sang Hyun;Lee, Hosub;Nam, Kyoungphile
Journal of Soil and Groundwater Environment
/
v.25
no.3
/
pp.32-42
/
2020
오염부지 관리 기조가 매체 중심에서 수용체 중심으로 변화하면서 우리나라에 위해성평가 제도가 도입되었으나, 이를 오염현장에 충분히 활용하기 위한 체계와 관련 기술들은 아직 제대로 확립되어 있지 않다. 특히, 여러 가지 이유로 정화곤란부지로 분류가 되는 오염부지의 정화 및 관리와 그러한 부지에 적용될 수 있는 위해저감기술들에 대한 기술적, 사회적 논의와 합의도 부족한 실정이다. 본 연구에서는 그동안 오염토양의 정화에만 초점이 맞추어진 우리나라의 토양환경정책이 오염부지의 관점에서 그와 연결된 수용체를 보호하는 방향으로 나아가기 위해 필요한 위해성기반 오염 부지관리 의사결정체계를 제안하고, 그러한 관리체계가 현장에서 적절히 적용되도록 하기 위해 필요한 위해저감기술들을 조사, 분류하여 위해저감 방식에 따른 위해저감기술의 활용성 및 적용성을 평가하는 방안을 제안하였다.
Proceedings of the Korea Water Resources Association Conference
/
2011.05a
/
pp.117-121
/
2011
기존 국내의 자연형 하천복원사업은 인위적으로 정비된 하천을 대상으로 훼손된 자연성을 되살리기 위하여 물리적 환경의 개선을 중심으로 진행되었으며, 저수호안의 안정성과 더불어 식생 피복율을 높이는 등 형태적 복원을 중심으로 사업이 시행되어 왔다. 이러한 자연형 하천복원사업은 하천의 생태적 특성에 대한 고려가 미비하여 하천이 생물서식처로서의 기능을 수행하는 데에는 효과적이지 못하였다. 따라서 본 연구는 하천의 물리적 특성에 의하여 형성되는 생물서식처와 이에 반응하는 생물들의 상호관련성을 분석하여 생물들에게 적합한 서식환경을 제공할 수 있는 기술을 개발하며, 하천유역의 환경 훼손으로 인하여 개체수가 급감하고 있는 종을 복원 목표종으로 선정하여 개발된 기술을 현장에 시범적으로 적용하여 기술을 검증함으로써 생물을 중심으로 한 자연과 함께하는 하천복원기술을 개발하고자 하였다. 이를 위해 우리나라의 중소하천을 대표할 수 있는 대표하천을 선정하여, 서식처 유형을 분류하고 각 서식처의 물리 화학 생태특성을 분석하였으며, 이를 통해 납자루아과 어종의 산란처 및 서식처로서의 역할을 하는 개방형 하도습지 조성 기술을 개발 및 시범적용 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.