• 제목/요약/키워드: 기계 학습 알고리즘

검색결과 781건 처리시간 0.027초

양자 기계학습 기술의 현황 및 전망 (The Present and Perspective of Quantum Machine Learning)

  • 정원주;이성환
    • 정보과학회 논문지
    • /
    • 제43권7호
    • /
    • pp.751-762
    • /
    • 2016
  • 본고에서는 양자역학 기반의 기계학습인 양자 기계학습의 현황과 전망을 조망하고자 한다. 양자역학 기반의 양자컴퓨팅이 보여준 혁신적인 계산속도 개선에 힘입어 기계학습 분야에 양자컴퓨팅 알고리즘을 적용하는 연구는 빅데이터 시대의 도래에 따라 최근 집중적인 관심을 받고 있다. 고전적인 기계학습 알고리즘들에 양자컴퓨팅을 접목하여 획기적인 속도개선을 가능하게 하는 알고리즘 연구들과 최초의 상용 양자컴퓨터로 화제가 되고 있는 양자 담금질 알고리즘 등을 중심으로 양자 기계학습의 최신동향과 가능성을 살펴보고자 한다.

랜덤 탐색과 유전 알고리즘 탐색을 이용한 효율적 기계학습 방법 연구 (A Study on Efficient Machine Learning Method Using Random Search and Genetic Algorithm Search)

  • 이경태;권영근
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.494-496
    • /
    • 2020
  • 기계학습 모델을 이용한 분류 및 회귀 문제해결에는 다양한 전처리 알고리즘 및 기계학습 모델이 활용된다. 하지만 합리적인 성능을 위해서는 주어진 데이터에 따라 적절한 알고리즘 조합에 대한 탐색 및 최적화 과정이 펄수적이다. 본 논문에서는 최적의 알고리즘 조합을 탐색하는 방법 중 랜덤 탐색과 유전 알고리즘 탐색 방법을 구현하고 8가지 데이터에 대한 성능 비교를 통해 여러 기계학습 모델을 고려하는 탐색 방법의 필요성을 보인다.

기계습의 영상인식결과에 대한 입력영상의 영향도 분석 기법 (Analysis Method of influence of input for Image recognition result of machine learning)

  • 김도완;김우성;이은헌;김현철
    • 한국컴퓨터교육학회 학술대회
    • /
    • 한국컴퓨터교육학회 2017년도 하계학술대회
    • /
    • pp.209-211
    • /
    • 2017
  • 기계학습은 인공지능(AI, Artificial Intelligence)의 일종으로 다른 인공지능 알고리즘이 정해진 규칙을 기반으로 주어진 임무(Task)를 해결하는 것과는 달리, 기계학습은 수집된 Data를 기반으로 최적의 솔루션을 학습한 후 미래의 값들을 예측하거나 해석하는 방법을 사용하고 있다. 더욱이 인터넷을 통한 연결성의 확대와 컴퓨터의 연산능력 발전으로 가능하게 된 Big-Data를 기반으로 하고 있어 이전의 인공지능 알고리즘에 비해 월등한 성능을 보여주고 있다. 그러나 기계학습 알고리즘이 Data를 학습할 때 학습 결과를 사람이 해석하기에 너무 복잡하여 사람이 그 내부 구조를 이해하는 것은 사실상 불가능하고, 이에 따라 학습된 기계학습 모델의 단점 또는 한계 등을 알지 못하는 문제가 있다. 본 연구에서는 이러한 블랙박스화된 기계학습 알고리즘의 특성을 이해하기 위해, 기계학습 알고리즘이 특정 입력에 대한 결과를 예측할 때 어떤 입력들로 부터 영향을 많이 받는지 그리고 어떤 입력으로부터 영향을 적게 받는지를 알아보는 방법을 소개하고 기존 연구의 단점을 개선하기 위한 방법을 제시한다.

  • PDF

기계학습 응용 및 학습 알고리즘 성능 개선방안 사례연구 (A Case Study on Machine Learning Applications and Performance Improvement in Learning Algorithm)

  • 이호현;정승현;최은정
    • 디지털융복합연구
    • /
    • 제14권2호
    • /
    • pp.245-258
    • /
    • 2016
  • 본 논문에서는 기계학습과 관련된 다양한 사례들에 대한 연구를 바탕으로 기계학습 응용 및 학습 알고리즘의 성능 개선 방안을 제시한다. 이를 위해 기계학습 기법을 적용하여 결과를 얻어낸 문헌을 자료로 수집하고 학문분야로 나누어 각 분야에서 적합한 기계학습 기법을 선택 및 추천하였다. 공학에서는 SVM, 의학에서는 의사결정나무, 그 외 분야에서는 SVM이 빈번한 이용 사례와 분류/예측의 측면에서 그 효용성을 보였다. 기계학습의 적용 사례분석을 통해 응용 방안의 일반적 특성화를 꾀할 수 있었다. 적용 단계는 크게 3단계로 이루어진다. 첫째, 데이터 수집, 둘째, 알고리즘을 통한 데이터 학습, 셋째, 알고리즘에 대한 유의미성 테스트 이며, 각 단계에서의 알고리즘의 결합을 통해 성능을 향상시킨다. 성능 개선 및 향상의 방법은 다중 기계학습 구조 모델링과 $+{\alpha}$ 기계학습 구조 모델링 등으로 분류한다.

기계학습을 이용한 다중물리해석 결과 예측 (Prediction of Multi-Physical Analysis Using Machine Learning)

  • 이근명;김기영;오웅;유성규;송병석
    • 전기전자학회논문지
    • /
    • 제20권1호
    • /
    • pp.94-102
    • /
    • 2016
  • 본 논문에서는 기계학습 알고리즘을 이용하여 다중물리(Multi-physics) 시뮬레이션의 반복 횟수를 획기적으로 줄일 수 있는 다중물리해석 예측 방법을 제안한다. 기존의 다중물리해석 시뮬레이션의 경우 소요되는 시간과 노력을 줄이기 위해 시뮬레이션 자체에 대한 방법과 환경 개선에 초점이 맞추어져 있으나 본 논문에서는 다중물리 시뮬레이션 결과를 기계학습 알고리즘으로 학습하여 추가적인 시뮬레이션을 수행하지 않고 학습된 기계학습 알고리즘을 사용하여 수십분에서 수시간에 걸리는 다중 물리 해석과 유사한 결과를 수초 내에 예측할 수 있음을 보였다. 기계학습 알고리즘 간의 성능을 비교하여 다중물리해석에 적합한 기계학습 알고리즘을 확인하였으며 가장 우수한 성능을 보인 가우시안 프로세스 회귀(Gaussian Process Regression)의 경우 100개 이하의 학습 샘플만으로도 우수한 예측 결과를 얻어낼 수 있음을 확인하였다. 제안하는 방식을 통해 시뮬레이션을 하고자 하는 모델의 형상이나 재질이 변경될 경우 기존의 시뮬레이션 결과로 학습된 알고리즘이 있다면 시뮬레이션을 반복 수행하기 전에 알고리즘을 이용하여 결과를 예측할 수 있어 시뮬레이션의 반복 횟수를 줄일 수 있을 것으로 기대한다.

회전수가 변하는 기기의 상태 진단에 있어서 특성 기반 분류 알고리즘과 합성곱 기반 알고리즘의 예측 정확도 비교 (Comparison of Classification and Convolution algorithm in Condition assessment of the Failure Modes in Rotational equipments with varying speed)

  • 문기영;황세윤;이장현
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2022년도 춘계학술대회
    • /
    • pp.301-301
    • /
    • 2022
  • 본 연구는 운영 조건이 달라짐에 따라 회전수가 변하는 기기의 정상적 가동 여부와 고장 종류를 판별하기 위한 인공지능 알고리즘의 적용을 다루고 있다. 회전수가 변하는 장비로부터 계측된 상태 모니터링 센서의 신호는 비정상(non-stationary)적 특성이 있으므로, 상태 신호의 한계치가 고장 판별의 기준이 되기 어렵다는 점을 해결하고자 하였다. 정상 가동 여부는 이상 감지에 효율적인 오토인코더 및 기계학습 알고리즘을 적용하였으며, 고장 종류 판별에는 기계학습법과 합성곱 기반의 심층학습 방법을 적용하였다. 변하는 회전수와 연계된 주파수의 비정상적 시계열도 적절한 고장 특징 (Feature)로 대변될 수 있도록 시간 및 주파수 영역에서 특징 벡터를 구성할 수 있음을 예제로 설명하였다. 차원 축소 및 카이 제곱 기법을 적용하여 최적의 특징 벡터를 추출하여 기계학습의 분류 알고리즘이 비정상적 회전 신호를 가진 장비의 고장 예측에 활용될 수 있음을 보였다. 이 과정에서 k-NN(k-Nearest Neighbor), SVM(Support Vector Machine), Random Forest의 기계학습 알고리즘을 적용하였다. 또한 시계열 기반의 오토인코더 및 CNN (Convolution Neural Network) 적용하여 이상 감지와 고장진단을 수행한 결과를 비교하여 제시하였다.

  • PDF

악성코드 탐지를 위한 기계학습 알고리즘의 성능 비교 (Performance Comparison of Machine Learning Algorithms for Malware Detection)

  • 이현종;허재혁;황두성
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2018년도 제57차 동계학술대회논문집 26권1호
    • /
    • pp.143-146
    • /
    • 2018
  • 서명기반 악성코드 탐지는 악성 파일의 고유 해싱 값을 사용하거나 패턴화된 공격 규칙을 이용하므로, 변형된 악성코드 탐지에 취약한 단점이 있다. 기계 학습을 적용한 악성코드 탐지는 이러한 취약점을 극복할 수 있는 방안으로 인식되고 있다. 본 논문은 정적 분석으로 n-gram과 API 특징점을 추출해 특징 벡터로 구성하여 XGBoost, k-최근접 이웃 알고리즘, 지지 벡터 기기, 신경망 알고리즘, 심층 학습 알고리즘의 일반화 성능을 비교한다. 실험 결과로 XGBoost가 일반화 성능이 99%로 가장 우수했으며 k-최근접 이웃 알고리즘이 학습 시간이 가장 적게 소요됐다. 일반화 성능과 시간 복잡도 측면에서 XGBoost가 비교 대상 알고리즘에 비해 우수한 성능을 보였다.

  • PDF

클래스 불균형 데이터에 적합한 기계 학습 기반 침입 탐지 시스템 (Machine Learning Based Intrusion Detection Systems for Class Imbalanced Datasets)

  • 정윤경;박기남;김현주;김종현;현상원
    • 정보보호학회논문지
    • /
    • 제27권6호
    • /
    • pp.1385-1395
    • /
    • 2017
  • 본 논문에서는 정상과 이상 트래픽이 불균형적으로 발생하는 상황에서 기계 학습 기반의 효과적인 침입 탐지 시스템에 관한 연구 결과를 소개한다. 훈련 데이터의 패턴을 학습하여 정상/이상 패킷을 탐지하는 기계 학습 기반의 IDS에서는 훈련 데이터의 클래스 불균형 정도에 따라 탐지 성능이 현저히 차이가 날 수 있으나, IDS 개발 시 이러한 문제에 대한 고려는 부족한 실정이다. 클래스 불균형 데이터가 발생하는 환경에서도 우수한 탐지 성능을 제공하는 기계 학습 알고리즘을 선정하기 위하여, 본 논문에서는 Kyoto 2006+ 데이터셋을 이용하여 정상 대 침입 클래스 비율이 서로 다른 클래스 불균형 훈련 데이터를 구축하고 다양한 기계 학습 알고리즘의 인식 성능을 분석하였다. 실험 결과, 대부분의 지도 학습 알고리즘이 좋은 성능을 보인 가운데, Random Forest 알고리즘이 다양한 실험 환경에서 최고의 성능을 보였다.

임베디드 시스템에서의 양자화 기계학습을 위한 양자화 오차보상에 관한 연구 (Study on Quantized Learning for Machine Learning Equation in an Embedded System)

  • 석진욱;김정시
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 추계학술대회
    • /
    • pp.110-113
    • /
    • 2019
  • 본 논문에서는 임베디드 시스템에서의 양자화 기계학습을 수행할 경우 발생하는 양자화 오차를 효과적으로 보상하기 위한 방법론을 제안한다. 경사 도함수(Gradient)를 사용하는 기계학습이나 비선형 신호처리 알고리즘에서 양자화 오차는 경사 도함수의 조기 소산(Early Vanishing Gradient)을 야기하여 전체적인 알고리즘의 성능 하락을 가져온다. 이를 보상하기 위하여 경사 도함수의 최대 성분에 대하여 직교하는 방향의 보상 탐색 벡터를 유도하여 양자화 오차로 인한 성능 하락을 보상하도록 한다. 또한, 기존의 고정 학습률 대신, 내부 순환(Inner Loop) 없는 비선형 최적화 알고리즘에 기반한 적응형 학습률 결정 알고리즘을 제안한다. 실험결과 제안한 방식의 알고리즘을 비선형 최적화 문제에 적용할 시 양자화 오차로 인한 성능 하락을 최소화시킬 수 있음을 확인하였다.

  • PDF

불균형 데이터 학습을 위한 지지벡터기계 알고리즘 (Support Vector Machine Algorithm for Imbalanced Data Learning)

  • 김광성;황두성
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권7호
    • /
    • pp.11-17
    • /
    • 2010
  • 본 논문에서는 클래스 불균형 학습을 위한 이차 최적화 문제의 해를 구하는 개선된 SMO 학습 알고리즘을 제안한다. 클래스에 서로 다른 정규화 값이 부여되는 지지벡터기계의 최적화 문제의 구현에 SMO 알고리즘이 적합하며, 제안된 알고리즘은 서로 다른 클래스에서 선택된 두 라그랑지 변수의 현재 해를 구하는 학습 단계를 반복한다. 제안된 학습 알고리즘은 UCI 벤치마킹 문제에서 테스트되어 클래스 불균형 분포를 반영하는 g-mean 평가를 이용한 일반화 성능이 SMO 알고리즘과 비교되었다. 실험 결과에서 제안된 알고리즘은 SMO에 비해 적은 클래스 데이터의 예측율을 높이고 학습시간을 단축시킬 수 있다.