• Title/Summary/Keyword: 기계학습알고리즘

Search Result 781, Processing Time 0.03 seconds

Relaying Rogue AP detection scheme using SVM (SVM을 이용한 중계 로그 AP 탐지 기법)

  • Kang, Sung-Bae;Nyang, Dae-Hun;Choi, Jin-Chun;Lee, Sok-Joon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.3
    • /
    • pp.431-444
    • /
    • 2013
  • Widespread use of smartphones and wireless LAN accompany a threat called rogue AP. When a user connects to a rogue AP, the rogue AP can mount the man-in-the-middle attack against the user, so it can easily acquire user's private information. Many researches have been conducted on how to detect a various kinds of rogue APs, and in this paper, we are going to propose an algorithm to identify and detect a rogue AP that impersonates a regular AP by showing a regular AP's SSID and connecting to a regular AP. User is deceived easily because the rogue AP's SSID looks the same as that of a regular AP. To detect this type of rogue APs, we use a machine learning algorithm called SVM(Support Vector Machine). Our algorithm detects rogue APs with more than 90% accuracy, and also adjusts automatically detection criteria. We show the performance of our algorithm by experiments.

Design of the student Career prediction program using the decision tree algorithm (의사결정트리 알고리즘을 이용한 학생진로 예측 프로그램의 설계)

  • Kim, Geun-Ho;Jeong, Chong-In;Kim, Chang-Seok;Kang, Shin-Chun;Kim, Eui-Jeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.332-335
    • /
    • 2018
  • In recent years, artificial intelligence using big data has become a big issue in IT. Various studies are being conducted on services or technologies to effectively handle big data. The educational field, there is big data about students, but it is only a simple process to collect, lookup and store such data. In the future, it makes extensive use of artificial intelligence, machine learning, and statistical analysis to find meaningful rules, patterns, and relationships in the big data of the educational field, and to produce intelligent and useful data for the actual students. Accordingly, this study aims to design a program to predict the career of students using a decision tree algorithm based on the data from the student's classroom observations. Through a career prediction program, it is believed to be helpful to present application paths to students ' counseling and to also provide classroom behavior and direction based on the desired courses.

  • PDF

A Real-Time Hardware Design of CNN for Vehicle Detection (차량 검출용 CNN 분류기의 실시간 처리를 위한 하드웨어 설계)

  • Bang, Ji-Won;Jeong, Yong-Jin
    • Journal of IKEEE
    • /
    • v.20 no.4
    • /
    • pp.351-360
    • /
    • 2016
  • Recently, machine learning algorithms, especially deep learning-based algorithms, have been receiving attention due to its high classification performance. Among the algorithms, Convolutional Neural Network(CNN) is known to be efficient for image processing tasks used for Advanced Driver Assistance Systems(ADAS). However, it is difficult to achieve real-time processing for CNN in vehicle embedded software environment due to the repeated operations contained in each layer of CNN. In this paper, we propose a hardware accelerator which enhances the execution time of CNN by parallelizing the repeated operations such as convolution. Xilinx ZC706 evaluation board is used to verify the performance of the proposed accelerator. For $36{\times}36$ input images, the hardware execution time of CNN is 2.812ms in 100MHz clock frequency and shows that our hardware can be executed in real-time.

P2P Traffic Classification using Advanced Heuristic Rules and Analysis of Decision Tree Algorithms (개선된 휴리스틱 규칙 및 의사 결정 트리 분석을 이용한 P2P 트래픽 분류 기법)

  • Ye, Wujian;Cho, Kyungsan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.3
    • /
    • pp.45-54
    • /
    • 2014
  • In this paper, an improved two-step P2P traffic classification scheme is proposed to overcome the limitations of the existing methods. The first step is a signature-based classifier at the packet-level. The second step consists of pattern heuristic rules and a statistics-based classifier at the flow-level. With pattern heuristic rules, the accuracy can be improved and the amount of traffic to be classified by statistics-based classifier can be reduced. Based on the analysis of different decision tree algorithms, the statistics-based classifier is implemented with REPTree. In addition, the ensemble algorithm is used to improve the performance of statistics-based classifier Through the verification with the real datasets, it is shown that our hybrid scheme provides higher accuracy and lower overhead compared to other existing schemes.

Discovery of User Preference in Recommendation System through Combining Collaborative Filtering and Content based Filtering (협력적 여과와 내용 기반 여과의 병합을 통한 추천 시스템에서의 사용자 선호도 발견)

  • Ko, Su-Jeong;Kim, Jin-Su;Kim, Tae-Yong;Choi, Jun-Hyeog;Lee, Jung-Hyun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.6
    • /
    • pp.684-695
    • /
    • 2001
  • Recent recommender system uses a method of combining collaborative filtering system and content based filtering system in order to solve sparsity and first rater problem in collaborative filtering system. Collaborative filtering systems use a database about user preferences to predict additional topics. Content based filtering systems provide recommendations by matching user interests with topic attributes. In this paper, we describe a method for discovery of user preference through combining two techniques for recommendation that allows the application of machine learning algorithm. The proposed collaborative filtering method clusters user using genetic algorithm based on items categorized by Naive Bayes classifier and the content based filtering method builds user profile through extracting user interest using relevance feedback. We evaluate our method on a large database of user ratings for web document and it significantly outperforms previously proposed methods.

  • PDF

Automatic Classification of Advertising Restaurant Blogs Using Machine Learning Techniques (기계학습기법을 이용한 광고 외식 블로그의 자동분류)

  • Chang, Jae-Young;Lee, Byung-Jun;Cho, Se-Jin;Han, Da-Hye;Lee, Kyu-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.55-62
    • /
    • 2016
  • Recently, users choosing a restaurant basedon information provided by blogs are increasing significantly. However, those of most blogs are unreliable since domestic restaurant blogs are occupied by advertising postings written by 'power bloggers'. Thus, in order to ensure the reliability of blogs, it is necessary to filter the advertising blogs which are sometimes false or exaggerated. In this paper, we propose the method of distinguishing the advertising blogs utilizing an automatic classification technique. In the proposed technique, we first manually collected advertising restaurant blogs, and then analyzed features which are commonly found in those blogs. Using the extracted features, we determined whether a given blog is advertising one applying automatic classification algorithms. Additionally, we select the features and the algorithm which guarantee optimal classification performance through comparative experiments.

Particulate Matter Prediction using Multi-Layer Perceptron Network (다층 퍼셉트론 신경망을 이용한 미세먼지 예측)

  • Cho, Kyoung-woo;Jung, Yong-jin;Kang, Chul-gyu;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.620-622
    • /
    • 2018
  • The need for particulate matter prediction algorithms has increased as social interest in the effects of human on particulate matter increased. Many studies have proposed statistical modelling and machine learning techniques based prediction models using weather data, but it is difficult to accurately set the environment and detailed conditions of the models. In addition, there is a need to design a new prediction model for missing data in domestic weather monitoring station. In this paper, fine dust prediction is performed using multi-layer perceptron network as a previous study for particulate matter prediction. For this purpose, a prediction model is designed based on weather data of three monitoring station and the suitability of the algorithm for particulate matter prediction is evaluated through comparison with actual data.

  • PDF

Feature Vector Extraction for Solar Energy Prediction through Data Visualization and Exploratory Data Analysis (데이터 시각화 및 탐색적 데이터 분석을 통한 태양광 에너지 예측용 특징벡터 추출)

  • Jung, Wonseok;Ham, Kyung-Sun;Park, Moon-Ghu;Jeong, Young-Hwa;Seo, Jeongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.514-517
    • /
    • 2017
  • In solar photovoltaic systems, power generation is greatly affected by the weather conditions, so it is essential to predict solar energy for stable load operation. Therefore, data on weather conditions are needed as inputs to machine learning algorithms for solar energy prediction. In this paper, we use 15 kinds of weather data such as the precipitation accumulated during the 3 hours of the surface, upward and downward longwave radiation average, upward and downward shortwave radiation average, the temperature during the past 3 hours at 2 m above from the ground and temperature from the ground surface as input data to the algorithm. We analyzed the statistical characteristics and correlations of weather data and extracted the downward and upward shortwave radiation averages as a major elements of a feature vector with high correlation of 70% or more with solar energy.

  • PDF

A Study on Rotational Alignment Algorithm for Improving Character Recognition (문자 인식 향상을 위한 회전 정렬 알고리즘에 관한 연구)

  • Jin, Go-Whan
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.79-84
    • /
    • 2019
  • Video image based technology is being used in various fields with continuous development. The demand for vision system technology that analyzes and discriminates image objects acquired through cameras is rapidly increasing. Image processing is one of the core technologies of vision systems, and is used for defect inspection in the semiconductor manufacturing field, object recognition inspection such as the number of tire surfaces and symbols. In addition, research into license plate recognition is ongoing, and it is necessary to recognize objects quickly and accurately. In this paper, propose a recognition model through the rotational alignment of objects after checking the angle value of the tilt of the object in the input video image for the recognition of inclined objects such as numbers or symbols marked on the surface. The proposed model can perform object recognition of the rotationally sorted image after extracting the object region and calculating the angle of the object based on the contour algorithm. The proposed model extracts the object region based on the contour algorithm, calculates the angle of the object, and then performs object recognition on the rotationally aligned image. In future research, it is necessary to study template matching through machine learning.

Pose Classification and Correction System for At-home Workouts (홈 트레이닝을 위한 운동 동작 분류 및 교정 시스템)

  • Kang, Jae Min;Park, Seongsu;Kim, Yun Soo;Gahm, Jin Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.9
    • /
    • pp.1183-1189
    • /
    • 2021
  • There have been recently an increasing number of people working out at home. However, many of them do not have face-to-face guidance from experts, so they cannot effectively correct their wrong pose. This may lead to strain and injury to those doing home training. To tackle this problem, this paper proposes a video data-based pose classification and correction system for home training. The proposed system classifies poses using the multi-layer perceptron and pose estimation model, and corrects poses based on joint angels estimated. A voting algorithm that considers the results of successive frames is applied to improve the performance of the pose classification model. Multi-layer perceptron model for post classification shows the highest accuracy with 0.9. In addition, it is shown that the proposed voting algorithm improves the accuracy to 0.93.