Proceedings of the Korean Institute of Information and Commucation Sciences Conference (한국정보통신학회:학술대회논문집)
- 2018.10a
- /
- Pages.620-622
- /
- 2018
Particulate Matter Prediction using Multi-Layer Perceptron Network
다층 퍼셉트론 신경망을 이용한 미세먼지 예측
- Cho, Kyoung-woo (Korea University of Technology and Education(KOREATECH)) ;
- Jung, Yong-jin (Korea University of Technology and Education(KOREATECH)) ;
- Kang, Chul-gyu (SEMES Co. LTD.) ;
- Oh, Chang-heon (Korea University of Technology and Education(KOREATECH))
- Published : 2018.10.18
Abstract
The need for particulate matter prediction algorithms has increased as social interest in the effects of human on particulate matter increased. Many studies have proposed statistical modelling and machine learning techniques based prediction models using weather data, but it is difficult to accurately set the environment and detailed conditions of the models. In addition, there is a need to design a new prediction model for missing data in domestic weather monitoring station. In this paper, fine dust prediction is performed using multi-layer perceptron network as a previous study for particulate matter prediction. For this purpose, a prediction model is designed based on weather data of three monitoring station and the suitability of the algorithm for particulate matter prediction is evaluated through comparison with actual data.
미세먼지에 대한 인체 영향에 관한 사회적 관심이 높아짐에 따라 미세먼지 예측 알고리즘의 필요성이 증가되었다. 많은 연구에서 기상 데이터를 이용하여 통계 모델링 및 기계 학습 기법 기반 예측 모델이 제안되었으나, 해당 모델의 환경 및 세부조건을 정확히 설정하기는 어렵다. 또한 국내 기상 측정소 데이터의 경우 누락된 데이터가 존재하여 새로운 예측 모델을 설계해야 할 필요성이 있다. 본 논문에서는 미세먼지 예측을 위한 선행 연구로서 다층 퍼셉트론 신경망을 활용하여 미세먼지 예측을 수행한다. 이를 위해 측정소 3곳의 기상 데이터를 기반으로 예측 모델을 설계, 실제 데이터와의 비교를 통해 미세먼지 예측을 위한 알고리즘의 적합성을 평가한다.