• Title/Summary/Keyword: 기계적이음

Search Result 9,624, Processing Time 0.038 seconds

Mechanical Properties of Joints according to Welding Methods and Sensitivity Analysis of FSW's Welding Variables for A6005 Extruded Alloy of Rolling Stock (철도차량용 A6005 압출재의 용접방법에 따른 접합부 기계적 특성 및FSW 용접 변수의 민감도 분석)

  • Kim, Weon-Kyong;Won, Si-Tae;Goo, Byeong-Choon
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.131-138
    • /
    • 2010
  • Recently, extruded aluminium-alloy panels have been used in the car bodies in order to meet the needs for the speed-up and light-weight of the railway vehicles. Most of the car bodies were jointed by arc weldings, like GMAW (GasMetal Arc Welding) and GTAW (Gas Tungsten Arc Welding), but these weldings became fairly worse the mechanical properties of the junction than the base metal. Nowadays, FSW (Friction Stir Welding), which is superior to the arc weldings, has been applied in the railway vehicles. In this study, the mechanical properties of the joints in both FSW and GMAW for A6005 extruded aluminium-alloy sheets have discussed. In addition, the relationships between the welding conditions and the mechanical properties for the joint of FSW have analyzed through the sensitivity analysis. It can be concluded that the mechanical properties for the joint of FSW are better than those of GMAW and the welding speed is the most sensible welding condition in the process of FSW.

Analysis and Mechanical Behavior of Coating Layer in Metallic Glass Matrix Composite (비정질 기지 복합재 코팅층의 미세조직 분석 및 기계적 거동)

  • Jang, Beom Taek;Yi, Seong Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.629-636
    • /
    • 2014
  • For surface modification, bulk metallic glass coatings were fabricated using metallic glass powder and a mixture of a self-fluxing alloy or/and hard metal alloys with a heat-resisting property using a high velocity oxy-fuel coating thermal spraying process. Microstructural analyses and mechanical tests were carried out using X-ray diffraction, a scanning electron microscope, an atomic force microscope, a three-dimensional optical profiler, and nanoindenation. As a result, the monolithic metallic glass coating was found to consist of solid particle and lamellae regions that included many pores. Second phase-reinforced composite coatings with a self-fluxing alloy or/and hard metal alloy additives were employed with in-situ $Cr_2Ni_3$ precipitate or/and ex-situ WC particles in an amorphous matrix. The mechanical behaviors of the solid particles and lamella regions showed large hardness and elastic modulus differences. The mechanical properties of the particle regions in the metallic glass composite coatings were superior to those of the lamellae regions in the monolithic metallic glass coatings, but indicated similar trends in matrix region of all the coating layers.

A Statistical Analysis on the Mechanical Properties of Structural Welding Steels (용접구조용강재의 기계적 성질에 관한 통계적 분석)

  • Chang, Dong-Il;Kyung, Kab-Soo;Hong, Sung-Wook;Nam, Wang-Hyone
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.3 s.46
    • /
    • pp.281-290
    • /
    • 2000
  • In this study, we have quantitatively estimated the mechanical properties of structural welding steels widely used in steel structures after correcting the millsheets of the steels using statistical technique. From this result, in present, the mechanical properties of the steels produced in domestics have satisfied the prescribed values in Korean Standards. The mechanical properties of the steels were dependent upon the plate thickness & class of the steels. Also, there have been linear relations between the plate thickness & class of the steels and the mechanical properties of the steels. And the results of this study have shown the similar tendencies with the existing results. Because the upper limit value of yield strength is not prescribed at Korean Standards in present, it is necessary to prescribe the upper limit value of yielding ratio(or yield strength) in order to assure the deformation performance of the steels.

  • PDF

Failure Strength of the Composite Mechanical Joint according to the Stacking Angle (적층각 변화에 따른 복합재료 기계적 체결부의 파손강도)

  • Jo, Dae-Hyeon;Kim, Cheol-Hwan;Choi, Jin-Ho
    • Composites Research
    • /
    • v.30 no.4
    • /
    • pp.229-234
    • /
    • 2017
  • Generally, joints are the weakest part in the composite structures. Composite joints can be classified into adhesive joints and mechanical joints, and mechanical joints are mainly used in areas less sensitive to environmental conditions. In this paper, the failure loads of composite mechanical joints with five different stacking angles are tested and predicted. Finite element analysis of mechanical joints were performed and failure loads were predicted by the FAI(Failure Area Index) method using Tsai-Wu and Yamada-Sun failure criteria, and the predicted failure loads were compared with experimental results. From the experiment and analysis, the failure loads of the mechanical joints were decreased as the ratio of 0 degree layer was low and they could be predicted within 13.03% using the FAI method and Yamada-Sun failure criteria.

The Effect of Electrolyte-coating on the Mechanical Performance of Carbon Fabric for Multifunctional Structural Batteries (다기능성 구조전지용 탄소섬유직물의 전해질 코팅이 기계적 성능에 미치는 효과)

  • Park, Hyun-Wook;Park, Mi-Young;Kim, Chun-Gon;Kim, Soo-Hyun
    • Composites Research
    • /
    • v.28 no.5
    • /
    • pp.285-290
    • /
    • 2015
  • Multiscale multiphysics in structural batteries make mechanical property testing difficult. In this research, the effect of electrolyte-coating on the mechanical performance of carbon fabric was studied using a suitable mechanical test method for structural batteries. For this experiment, two types of specimens were determined their dimension according to ASTM. One type of specimen was smaller than the standard dimension. The specimens were coated by spreading the electrolyte material on carbon fabric, hardened using epoxy, and tested for tensile properties using universal testing machine. As a result, it was found that the mechanical properties of carbon fabric were not influenced by electrolyte coating. In addition, the small-scale specimen used in this experiment was determined to be sufficiently reliable.

자동차용 강판의 온도에 따른 기계적 특성

  • Hyeon, Ju-Sik;Lee, Bo-Ryong;Mun, Man-Bin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.39.1-39.1
    • /
    • 2010
  • 겨울철 혹한지방에서의 차량운행 또는 여름철 혹서지방에서의 장시간 차량 운행시 차체를 구성하고 있는 강판에는 약 $-50^{\circ}C{\sim}150^{\circ}C$의 온도환경에 처하게 된다. 따라서 이러한 저온 고온 환경하에서 차체 충돌상품성 예측 및 충돌안전 설계를 위해 온도에 따른 차체 강판의 기계적 물성평가가 요구된다. 이를 위해 본 연구에서는 자동차용 충돌부재에 주로 쓰이는 HS440MPa, HS590MPa급 냉연 고장력 강판에 대해 $-60^{\circ}C{\sim}200^{\circ}C$의 온도범위로 저온 고온 인장시험을 수행 하였다. 각각의 인장시험 결과로부터 온도 별 항복강도, 인장강도, 연신율, 가공경화지수 등 기계적 물성 변화를 평가하였다. 저온 고온 인장시험은 ZWICK Z250 만능재료시험기를 사용하였고 KS5호 규격의 인장시편을 사용하였으며, 시편에 충분한 온도를 가하기 위하여 목표온도 도달 후 20분간 유지한 뒤 인장시험을 수행하였다. 인장시험결과 HS440MPa, HS590MPa급 두 강종 모두 온도가 낮아질수록 강도 및 연신율 등이 증가하였고, 온도가 증가할수록 강도 및 연신율 등 기계적 물성이 저하 되었다. 즉, 우리가 주로 평가해왔던 상온($25^{\circ}C$)에 비해 저온 고온 환경하에서는 강판의 기계적 물성 변화가 큰 것을 알 수 있다. 따라서 혹한 또는 혹서 지방 등 온도차이가 큰 운행환경하에서의 차체 강도 및 충돌안전성 확보를 위해 온도에 따른 강판의 정확한 물성평가가 필요하고 차체 설계시 온도에 따른 강도변화를 충분히 고려하여야 한다.

  • PDF

Metal-Body Images in Shinya Tsukamoto's (1989) (츠카모토 신야의 <철남(鐵男)>(1989)을 통해 살펴 본 기계적-몸 이미지)

  • Kwon, Soojin;Kwon, Hajin
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.6
    • /
    • pp.168-178
    • /
    • 2015
  • This article analysis the aesthetics of metal-body of (1989) and its metamorphosis of dehumanization through visual desires expressed by body images. This paper suggests theoretical analysis based on aesthetic views to understand the underlying meanings. The research categorizes three types of images; surreal image, grotesque image and eros image from the metamorphosis of dehumanization and transformation throughout the film. As the surreal image, the metamorphic process of transformation, demolition, derangement, illusion, and human desire continues to reflect the evil side of a human in everyday life. It also visualizes the images of exaggeration through weakness and bizarre side of metal-body. The grotesque image of body metamorphosis displays and symbolizes double-sides of bizarre and weak side of human in the everyday environment when malformation reaches its peak when Tetsuo finally shows his transforming figure. Finally, the eros image is analogized as a man's inner self and self-destruction in surreal world and a grotesque figure when overwhelming desire of transforming into rebirth of a perfect metal-body, Tetsuo. The surreal image, grotesque image, and eros image portraits human desires inner and outer-self into visualized image and that represents the means of excessive desire for dreaming of world domination with merging non-organic medium of metal and organic body to create a perfect body-image.

Analysis microstructure and mechanical properties of AlCr-based cutting tool coatings (AlCr계 절삭공구 코팅의 미세조직 및 우수한 기계적 물성 분석)

  • Im, Gi-Seong;Kim, Yeong-Seok;Park, Hye-Jin;Mun, Sang-Cheol;Jeong, Se-Il;Kim, Gwang-Sik;Park, Yeong-Gun;Kim, Gi-Beom
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.131-131
    • /
    • 2018
  • 최근 절삭공구산업은 자동차, 항공기, IT, 선박, 에너지 등 첨단산업의 증가로 인해 CGI, CFRP, 내열합금 등 난삭재의 수요가 증가하고 있다. 난삭재는 고내열, 고경도, 초경량 같은 특성을 지니며 우수한 기계적 물성을 갖지만 가공의 어려움이 있어 산업에 적용하는데 한계가 있다. 이러한 한계를 극복하기 위해 개발된 가공기술 중 하드 코팅은 공구코팅비용 대비 공구의 표면경도와 수명을 효율적으로 향상시킬 수 있다고 알려져 있다. 대표적인 하드코팅으로는 AlN계, TiN계 코팅이 있다. 이러한 코팅의 경우 높은 기계적 물성과 우수한 내마모성으로 인해 절삭공구의 성능을 향상시킬 수 있기 때문에, 많은 연구가 진행되고 있으며 절삭공구산업에서 각광받고 있다. 기존 선행연구 결과에 따르면 질화물 코팅의 우수한 물성은 질화물(Nitride) 생성 및 질화 공정에 의한 코팅층의 고밀도화에 의해 나타난다고 알려져 있다. 그 중에서 AlCrN coating은 우수한 내마모성 및 향상된 고온경도를 갖고 있다. AlCrN based coating에 미량의 원소를 첨가하여 기존 AlCrN coating의 기계적 특성을 더욱 향상 시킨 coating은 일반적인 고성능 코팅 대비 공구수명이 길다고 알려져 있으며, 전반적으로 우수한 특성에 의해 전 세계적으로 습식 및 건식 기계 가공 용도로 사용되고 있다. 본 연구에서는 AlCrN based coating에 미량의 원소를 첨가한 coating의 우수한 기계적 특성의 원인을 규명하기 위해 텅스텐카바이드(WC) 기판 위에 아크 이온 플레이팅 장비를 이용하여 AlCrN based coating을 증착 시킨 sample을 분석하였다. 결정구조 및 상 분석을 위해 X선 회절분석(XRD)을 실시하였으며, 미세 구조를 분석하기 위해 전계방출형 주사전자현미경(FE-SEM), 투과 전자현미경(TEM) 분석을 실시하였다. 또한 코팅층의 화학적 성분 분석을 위해 EDX분석을 실시하였으며 기계적 특성 평가를 위해 나노압입시험(Nano-indentation test)을 진행하였다.

  • PDF

Effects of Melt-blending Condition and Additives on Mechanical Properties of Wood/PP Composites (용융혼합 조건과 첨가제가 목분/폴리프로필렌 복합체의 기계적 특성에 미치는 영향)

  • Ahn, Seong Ho;Kim, Dae Su
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.204-210
    • /
    • 2013
  • Effects of additives (lubricant and antioxidant) and melt-blending condition (temperature, time and rotor speed) on the mechanical properties of polypropylene-based wood polymer composites (WPCs) were investigated. WPCs were prepared by melt-blending followed by compression molding. To understand melt-blending procedure, torque change of the WPC melt-blend was monitored. Maleic anhydride modified PP and nanoclay were used as a compatibilizer and a reinforcing filler, respectively. UTM and izod impact tester were used to measure the mechanical properties of the WPCs and a color-difference meter was used to measure the discoloration of the WPCs according to melt-blending condition. The mechanical properties showed that the optimized melt-blending condition was $170^{\circ}C$, 15 min, and 60 rpm. The mechanical properties of the WPCs decreased with increasing lubricant and antioxidant content. The two step method, adding wood flour later separately during melt-blending, was more effective than the typical one step method for improving the mechanical properties of the WPCs.

Elongation Behavior of Polymeric Materials for Membrane Applications Using Molecular Dynamics (분자동역학을 이용한 분리막용 소재로 사용되는 고분자 소재의 신장거동 연구)

  • Kang, Hoseong;Park, Chi Hoon
    • Membrane Journal
    • /
    • v.32 no.1
    • /
    • pp.57-65
    • /
    • 2022
  • Recently, computer simulation research has been rapidly increasing due to the development of computer and software technology. In particular, various computational simulation results related to polymers, which were previously limited by problems of the number of atoms and model size, are being published. In this study, a study was conducted to analyze the mechanical properties, one of the important properties for using a polymer material as a membrane, using molecular dynamics (MD) simulation. To this end, polyethylene (PE) and polystyrene (PS), which are commercial polymer materials with widely reported related properties, were selected as polymer models and the tensile properties of each polymer were compared through the difference in main chain length. Through the density, radius of gyration, and scattering analysis, it was found that the model produced in this study was in good agreement with the mechanical property trends obtained in the actual experiment. It is expected to enable the prediction of mechanical properties of various polymer materials for membrane fabrication.