• 제목/요약/키워드: 기계시스템

검색결과 8,423건 처리시간 0.039초

근거리 원격탐사 기법을 이용한 총일차생산량 추정 및 순생태계 CO2 교환량 배분의 정확도 평가에 관하여 (On Using Near-surface Remote Sensing Observation for Evaluation Gross Primary Productivity and Net Ecosystem CO2 Partitioning)

  • 박주한;강민석;조성식;손승원;김종호;김수진;임종환;강민구;심교문
    • 한국농림기상학회지
    • /
    • 제23권4호
    • /
    • pp.251-267
    • /
    • 2021
  • 원격 탐사 기반의 식생지수들은 광합성을 조절하는 식물생리적 특성과 경험적 상관관계를 보이며, 여러공간 규모에서의 총일차생산량(GPP) 추정에 활용되고 있다. 하지만 시간 해상도가 높아질수록 식생지수를 이용한 GPP 추정의 불확실성이 커지는 한계가 존재한다. 또한 식생지수 관련 분석에 주로 사용되는 에디공분산법을 이용하여 추정한 GPP 역시 실제 측정한 순생태계교환량(NEE)을 GPP와 생태계 호흡(RE)으로 배분하는 데 사용하는 방법에 따라 추정값이 달라지는 불확실성이 존재한다. 본 연구에서는 플럭스 타워가 설치된 네 곳의 농림생태계를 대상으로 근지표에서 관측한 식생의 분광 특성을 이용한 다양한 식생지수를 계산하였고, 이를 다양한 시간 해상도에서 GPP 추정에 적용가능한 지를 분석하였다. 동시에 이를 이용하여 NEE 배분 방법의 불확실성을 평가하였다. 비교에 사용한 정규식생지수, 개량식생지수, 적외반사식생지수(NIRv)에 비해 적외반사식생지수와 광합성유효광(PAR)을 결합한 NIRvP이 식생 및 지형 조건에 의한 공간 이질성으로 인해 관측지에 따라 약간의 차이가 나타났지만, 농경지와 산림에서 모두 30분과 일 단위 시간 해상도에서 GPP와 높은 상관성(r2 = 0.63, 0.68)을 보였다. 또한 기존 KoFlux 표준 NEE 배분방법에 비해 기계학습 기반의 NEE 배분 방법을 적용할 경우, 산림에서 30분 단위의 GPP와 NIRvP 사이의 상관성이 향상되었지만, 일 단위에는 그 차이가 크지 않았다. 하지만 광조건 이외에 다른 요인에 의해 광합성이 제한되는 경우 NIRvP와 GPP 간의 상관성이 떨어져 NIRvP를 이용해 실제 배분 결과를 직접 평가하긴 어려웠으며, 주로 광 조건에 의해 광합성이 제한되는 흐린 날의 경우 NEE 배분 정확도를 평가할 수 있는 가능성이 존재하였다. 그러나 높은 시간해상도의 Vis 기반의 GPP 추정이 의미를 가지려면, VIs와 GPP간의 경험적 관계를 넘어서는 시스템 사고 및 자기-조직화와 관련된 복잡계 기반의 분석 방법이 요구된다.

KB-BERT: 금융 특화 한국어 사전학습 언어모델과 그 응용 (KB-BERT: Training and Application of Korean Pre-trained Language Model in Financial Domain)

  • 김동규;이동욱;박장원;오성우;권성준;이인용;최동원
    • 지능정보연구
    • /
    • 제28권2호
    • /
    • pp.191-206
    • /
    • 2022
  • 대량의 말뭉치를 비지도 방식으로 학습하여 자연어 지식을 획득할 수 있는 사전학습 언어모델(Pre-trained Language Model)은 최근 자연어 처리 모델 개발에 있어 매우 일반적인 요소이다. 하지만, 여타 기계학습 방식의 성격과 동일하게 사전학습 언어모델 또한 학습 단계에 사용된 자연어 말뭉치의 특성으로부터 영향을 받으며, 이후 사전학습 언어모델이 실제 활용되는 응용단계 태스크(Downstream task)가 적용되는 도메인에 따라 최종 모델 성능에서 큰 차이를 보인다. 이와 같은 이유로, 법률, 의료 등 다양한 분야에서 사전학습 언어모델을 최적화된 방식으로 활용하기 위해 각 도메인에 특화된 사전학습 언어모델을 학습시킬 수 있는 방법론에 관한 연구가 매우 중요한 방향으로 대두되고 있다. 본 연구에서는 금융(Finance) 도메인에서 다양한 자연어 처리 기반 서비스 개발에 활용될 수 있는 금융 특화 사전학습 언어모델의 학습 과정 및 그 응용 방식에 대해 논한다. 금융 도메인 지식을 보유한 언어모델의 사전학습을 위해 경제 뉴스, 금융 상품 설명서 등으로 구성된 금융 특화 말뭉치가 사용되었으며, 학습된 언어 모델의 금융 지식을 정량적으로 평가하기 위해 토픽 분류, 감성 분류, 질의 응답의 세 종류 자연어 처리 데이터셋에서의 모델 성능을 측정하였다. 금융 도메인 말뭉치를 기반으로 사전 학습된 KB-BERT는 KoELECTRA, KLUE-RoBERTa 등 State-of-the-art 한국어 사전학습 언어 모델과 비교하여 일반적인 언어 지식을 요구하는 범용 벤치마크 데이터셋에서 견줄 만한 성능을 보였으며, 문제 해결에 있어 금융 관련 지식을 요구하는 금융 특화 데이터셋에서는 비교대상 모델을 뛰어넘는 성능을 보였다.

인공지능 기반 금융서비스의 공정성 확보를 위한 체크리스트 제안: 인공지능 기반 개인신용평가를 중심으로 (A Checklist to Improve the Fairness in AI Financial Service: Focused on the AI-based Credit Scoring Service)

  • 김하영;허정윤;권호창
    • 지능정보연구
    • /
    • 제28권3호
    • /
    • pp.259-278
    • /
    • 2022
  • 인공지능(AI)의 확산과 함께 금융 분야에서도 상품추천, 고객 응대 자동화, 이상거래탐지, 신용 심사 등 다양한 인공지능 기반 서비스가 확대되고 있다. 하지만 데이터에 기반한 기계학습의 특성상 신뢰성과 관련된 문제 발생과 예상하지 못한 사회적 논란도 함께 발생하고 있다. 인공지능의 효용은 극대화하고 위험과 부작용은 최소화할 수 있는 신뢰할 수 있는 인공지능에 대한 필요성은 점점 더 커지고 있다. 이러한 배경에서 본 연구는 소비자의 금융 생활에 직접 영향을 끼치는 인공지능 기반 개인신용평가의 공정성 확보를 위한 체크리스트 제안을 통해 인공지능 기반 금융서비스에 대한 신뢰 향상에 기여하고자 하였다. 인공지능 신뢰성의 주요 핵심 요소인 투명성, 안전성, 책무성, 공정성 중 포용 금융의 관점에서 자동화된 알고리즘의 혜택을 사회적 차별 없이 모두가 누릴 수 있도록 공정성을 연구 대상으로 선정하였다. 문헌 연구를 통해 공정성이 영향을 끼치는 서비스 운용의 전 과정을 데이터, 알고리즘, 사용자의 세 개의 영역으로 구분하고, 12가지 하위 점검 항목과 항목별 세부 권고안으로 체크리스트를 구성하였다. 구성한 체크리스트는 이해관계자(금융 분야 종사자, 인공지능 분야 종사자, 일반 사용자)별 계층적 분석과정(AHP)을 통해 점검 항목에 대한 상대적 중요도 및 우선순위를 도출하였다. 이해관계자별 중요도에 따라 세 개의 그룹으로 분류하여 분석한 결과 학습데이터와 비금융정보 활용에 대한 타당성 검증 및 신규 유입 데이터 모니터링의 필요성 등 실용적 측면에서 구체적인 점검 사항을 파악하였고, 금융 소비자인 일반 사용자의 경우 결과에 대한 해석 오류 및 편향성 확인에 대한 중요도를 높게 평가한다는 것을 확인할 수 있었다. 본 연구의 결과가 더 공정한 인공지능 기반 금융서비스의 구축과 운영에 기여할 수 있기를 기대한다.

휴대용 포도자동결속기 개발연구 (Development of the paper bagging machine for grapes)

  • 박광호;이영철;문병우
    • 현장농수산연구지
    • /
    • 제11권1호
    • /
    • pp.79-94
    • /
    • 2009
  • 본 연구는 우리나라 식용포도 재배농가의 보호봉지 결속작업이 주로 고령의 부녀자에 의존하고 있어 향후 이들 노동력을 대체하기 위하여 기계적인 포도보호봉지 결속장치를 개발하여 생산비를 절감하고자 얻어진 결과 는 다음과 같다. 1. 포도 보호봉지 및 포장봉지 결속기 개발 가. 자동결속기 설계는 CATIA V12/AUTOCAD 2000으로 하였다. 나. 자동결속기는 포도보호봉지를 기계적으로 묶어주는 장치로 소형, 경량이어야 하며 작업 시간, 노동량을 줄어 젊은층에서부터 고령자까지 작업할 수 있도록 설계하였다. 다. 자동결속기의 총 무게는 350g이하 초경량으로 제작될 수 있도록 하였다. 라. 결속성공률은 99%이상이 되도록 하였다. 마. 자동결속기의 결속롤과 커터, 배터리, 모터 등의 구조를 스테플러와 같은 가트리지형태로 개발하였다. 바. 카트리지 핀은 C-ring 28mm형으로써 길이는 500mm정도로 포도보호봉지 및 제과·제빵포장봉지를 결속할 수 있도록 제작하였다. 사. 작업시 포도나무 포도넝쿨 등 장애물의 영향을 받지 않도록 디자인을 설계, 제작하였다. 2. 포도보호봉지 결속작업시스템 포장실증시험 가. 자동결속기 시작기를 이용한 포도 보호 봉지결속으로 시기별 과병장, 과식품질이 무처리에 비하여 현저히 높았다. 나. 포도보호봉지 결속작업은 숙련자의 경우 1일 3,000개내외 씌우는 반면 초보자는 1,200개(37%)정도로 크게 떨어졌다. 다. 포도 보호봉지 자동결속기를 이용한 작업효율성은 102%로써 숙련자의 노동력을 대체할 수 있을 것으로 판단되었다. ∘ 1단계 : 232.5%(앞치마에서 보호봉지를 꺼내어 포도에 씌움) ∘ 2단계 : 60.7%(씌운 보호봉지 주름을 잡음) ∘ 3단계 : 104.7%(주름이 잡힌 상태에서 결속) ∘ 4단계 : 102% 라. 포도 보호봉지 결속부위의 둘레(크기)를 조사한 바 관행보호봉지결속작업(수작업)에서는 손으로 철사핀을 감기 때문에 평균 4.6cm이었으며 자동결속기의 결속롤(핀)은 5.3cm가 되어 다소 줄이는 것이 정밀성이 높을 것으로 판단되었다. 마. 수확시 과실 품질(과중, 과방크기-과장, 과폭, 가용성고형물, 산함량)을 조사한 결과 처리한 차이가 인정되지 않았다. 바. 자동결속기를 이용한 포도보호봉지 결속작업처리에서 포도의 열과(터진포도)와 이병율 차이에는 관행방법과 차이가 없었다.

미국 프로농구(NBA)의 플레이오프 진출에 영향을 미치는 주요 변수 예측: 3점과 턴오버 속성을 중심으로 (Prediction of Key Variables Affecting NBA Playoffs Advancement: Focusing on 3 Points and Turnover Features)

  • 안세환;김영민
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.263-286
    • /
    • 2022
  • 본 연구는 웹 크롤링을 이용하여 1990년부터 2022년까지 총 32개년에 해당하는 NBA 통계 정보를 획득하고, 탐색적 데이터 분석을 통해 관심 변수를 관찰하고 관련된 파생변수를 생성한다. 입력 데이터에 대한 정제 과정을 거쳐 무의미한 변수들을 제거하고, 남은 변수에 대한 상관관계 분석, t 검정 및 분산분석을 수행하였다. 관심 변수에 대해 플레이오프 진출/미진출 그룹 간 평균의 차이를 검정하였고, 이를 보완하기 위해 순위를 기준으로 하는 3개 집단(상위/중위/하위) 간 평균 차이를 재확인하였다. 입력 데이터 중 올해 시즌 데이터만을 테스트 세트로 활용하였고, 모델 훈련을 위해서는 훈련 세트와 검증 세트를 분할하여 5-fold 교차검증을 수행하였다. 교차검증 결과와 시험 세트를 이용한 최종 분석 결과를 비교하여 성능 지표에서 차이가 없음을 확인함으로써 과적합 문제를 해결하였다. 원시 데이터의 품질 수준이 높고, 통계적 가정을 만족하기 때문에 적은 수준의 데이터 세트임에도 불구하고 대부분 모델에서 좋은 결과를 나타냈다. 본 연구는 단순히 머신러닝을 이용하여 NBA의 경기 결과를 예측하거나 플레이오프 진출 여부만을 분류하는 것에서 그치지 않고, 입력 특성의 중요도를 파악하여 높은 중요도를 갖는 주요 변수에 본 연구의 관심 대상 변수가 포함되는지를 확인하였다. Shap value의 시각화를 통해 특성 중요도의 결과만으로 해석할 수 없었던 한계를 극복하고, 변수의 진입/제거 과정에서 중요도 산출에 일관성이 부족하다는 점을 보완할 수 있었다. 본 연구에서 관심 대상으로 분류했던 3점 및 실책과 관련된 다수의 변수가 미국 프로농구에서의 플레이오프 진출에 영향을 미치는 주요 변수에 포함되는 것으로 나타났다. 본 연구는 기존의 스포츠 데이터 분석 분야에서 다루었던 경기 결과, 플레이오프 및 우승 예측 등의 주제를 포함하고 분석을 위해 여러 머신러닝 모델을 비교 분석했다는 점에서 유사성이 있지만, 사전에 관심 속성을 설정하고, 이를 통계적으로 검증함으로써 머신러닝 분석 결과와 비교하였다는 측면에서 차이가 있다. 또한 XAI 모델 중 하나인 SHAP를 이용하여 설명 가능한 시각화 결과를 제시함으로써 기존 연구와 차별화하였다.

산림지역에서의 2023년 봄철 꽃나무 개화시기 예측 (Prediction of Spring Flowering Timing in Forested Area in 2023)

  • 서지희;김수경;김현석;천정화;원명수;장근창
    • 한국농림기상학회지
    • /
    • 제25권4호
    • /
    • pp.427-435
    • /
    • 2023
  • 이상기상으로 인한 봄꽃 개화 시기의 변화는 식물의 생장기간 뿐 아니라 생물계절을 포함한 생태계의 모든 측면에 영향을 미친다. 따라서 봄꽃 개화 시기를 예측하는 것은 산림 생태계의 효과적인 관리에 필수적이다. 본 연구에서는 464곳의 산림에서 수집된 날씨정보를 기반으로 대한민국 산림의 대표적인 5가지 수종(미선나무, 아까시나무, 철쭉, 산철쭉, 마가목)의 2023년 개화 시기를 예측하기 위해 과정 기반 모형을 사용하였다. 이를 위해 28개 지역의 9년간(2009-2017) 개화 시기 자료를 활용하여 모형을 개발하였다. 개화 시기는 식물의 세 개 이상의 위치에서 처음으로 꽃이 피는 것을 기준으로 측정되었다. 본 연구에서는 STDD와 GDD 과정 기반 모형을 사용하여 개화 시기를 예측하였으며, 두 모형 모두 일반적으로 우수한 성능을 보였다. 과정 기반 모형의 주요 입력변수인 날씨 자료는 산악기상관측시스템과 기상청에서 제공하는 기온 정보를 융합하여 1km의 공간 해상도로 일 단위 기온 자료를 생성하였다. 지역별 보정 계수를 생산하고 적용하기 위해 랜덤포레스트 기계 학습을 활용하여 STDD와 GDD 모형을 기반으로 예측 정확도를 개선하였다. 결과적으로 보정 계수가 적용될 때 대부분의 수종에서 개화 시기의 예측 오차가 작았으며, 특히, 미선나무, 아까시나무, 철쭉에서 평균제곱근오차가 각각 1.2, 0.6, 1.2일로 매우 낮았다. 모형 성능을 평가하기 위해 10회의 무작위 샘플링 테스트를 실시하고, 최적의 결정계수 값을 가진 모형을 선택하여 모형의 성능을 평가하였다. 그 결과, 마가목을 제외한 모든 수종에서 보정 계수가 적용된 모형에서 결정계수가 최소 0.07에서 최대 0.7 증가하였으며 최종적으로 75%에서 90%의 설명력을 가졌다. 이를 기반으로 수종별 보정 계수를 산출하였으며, 1km 해상도의 전국 단위 개화시기예측 지도를 제작하였다. 본 연구는 식물의 계절 변화에 대한 자료로 활용될 것으로 예상되며, 수종 및 지역별로 개화 시기를 상세히 설명하여 기후 변화로 인한 계절 변화를 연구하는 데에 유용할 것으로 기대된다. 또한 우리나라 산림의 주요 수종에 대한 정확도 높은 개화 시기 예측 서비스는 산림 방문객들의 산림 경험 만족도를 크게 높일 수 있으며, 양봉업 등 임업 종사자들의 경제적 향상에 기여할 것으로 기대된다.

자연 상태에서의 인간감성 평가를 위한 비접촉식 인덕티브 센싱 기반의 착용형 센서 연구 (A Study on Wearable Emotion Monitoring System Under Natural Conditions Applying Noncontact Type Inductive Sensor)

  • 조현승;양진희;이상엽;이정환;이주현;김훈
    • 감성과학
    • /
    • 제26권3호
    • /
    • pp.149-160
    • /
    • 2023
  • 본 연구에서는 뇌혈류 신호를 측정할 수 있는 시변자계 기반의 비접촉식 직물센서를 설계하여 뇌혈류 신호 검출 및 감성평가의 가능성을 탐색하고자 하였다. 직물센서는 40 denier의 은사를 30합사 한 후 컴퓨터 기계 자수하여 코일형 센서로 구현하였다. 뇌혈류 측정 실험을 위해 코일형 센서를 경동맥 부위에 부착하고, ECG (Electrocardiogram) 전극과 RSP (Respiration) 측정 벨트를 부착 및 착용하도록 하였으며, 동시에 초음파 진단기기를 사용해 도플러 초음파 검사(Doppler Ultrasonography)를 수행하여 혈류 속도를 측정하였다. 피험자에게 Meta Quest 2를 착용시키고, 실험을 위해 조작된 영상 시각 자극을 보여주면서 혈류 신호를 측정한 후 시각 자극에 대한 감성평가 설문지를 작성하도록 하였다. 측정 결과, 도플러 초음파 검사를 통해 측정된 혈류 속도 신호에 변화가 생길 때 직물센서로 측정한 신호도 함께 변화하는 것으로 나타났다. 이를 통해 코일형 직물센서를 이용하여 뇌혈류활동 신호를 측정할 수 있다는 것을 검증하였다. 또한, 감성평가를 위하여 ECG 신호와 PLL 신호(직물센서 신호)에서 추출한 HRV를 계산해서 비교한 결과, 시각 자극으로 인한 교감신경계와 부교감신경계의 활성화에 따른 비율의 변화에 대해서는 직물센서로 측정한 신호와 ECG 신호를 이용해 계산한 값이 비슷한 경향을 보이는 것으로 나타났다. 결론적으로, 본 연구에서 개발된 시변자계 기반의 코일형 직물 센서를 통해 뇌혈류 변화 측정 및 감성 모니터링이 가능할 것으로 사료된다.

느타리 신품종 '오타리'의 육성 및 특성 (Breeding a new cultivar of Pleurotus ostreatus, 'Otari' and its characteristics)

  • 오민지;임지훈;김민식;최두호;이은지;우성이;오연이
    • 한국버섯학회지
    • /
    • 제22권3호
    • /
    • pp.128-132
    • /
    • 2024
  • 느타리는 국내에서 가장 많이 재배되고 소비되는 버섯 중 하나로 재배시스템이 기계화, 자동화되면서 대량생산이 가능해졌다. 기존에 외국에서 도입되어 20년 이상 재배되어온 '수한', '춘추느타리2호' 등의 품종을 순수 국산품종으로 대체하고자 많은 품종들이 개발되었다. 그 가운데 2015년 개발된 '솔타리'는 버섯의 품질은 우수하나 재배가 까다롭고 생산성이 다소 떨어져, 이를 보완하기 위해 국립원예특작과학원 버섯과에서는 보유중인 유전자원 KMCC05165를 선발하여 단포자 간 교잡을 시도하였고, 반복재배시험과 자실체 특성평가를 통해 최종 우량계통 Po-2019-smj22를 선발하고 '오타리'라고 명명하였다. '오타리'의 균사생장 적온은 25~30o℃이고, 버섯 생육 적온은 13~18℃인 중고온성 품종이다. PDA 배지에서의 균사생장은 25℃에서 가장 우수하였고, 25℃ 동일한 온도에서는 PDA, MEA, MCM, YM 4종류 배지에서 모두 균사생장 정도가 비슷하였다. 1,100 mL의 병재배 시, 수량은 약 174g으로 대조품종인 '솔타리'에 비해 약 5% 증수되었고, 유효경수도 약 25개로 더 많았다. 갓의 직경과 높이는 29.8 mm, 17.6 mm로 '솔타리'에 비해 다소 작았고, 대의 굵기는 12.2 mm로 얇고 긴 형태를 띠었다. 또한, 갓의 명도를 나타내는 L index 값은 30.7로 '솔타리'보다 더 어두운 흑갈색을 나타냈다. 균사활력이 우수하여 재배가 쉽고 유효경수가 많고 수량이 높아 생산성이 우수한 신품종 '오타리'가 국내 느타리 농가에 널리 보급되기를 기대해본다.

입력변수 및 학습사례 선정을 동시에 최적화하는 GA-MSVM 기반 주가지수 추세 예측 모형에 관한 연구 (A Study on the Prediction Model of Stock Price Index Trend based on GA-MSVM that Simultaneously Optimizes Feature and Instance Selection)

  • 이종식;안현철
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.147-168
    • /
    • 2017
  • 오래 전부터 학계에서는 정확한 주식 시장의 예측에 대한 많은 연구가 진행되어 왔고 현재에도 다양한 기법을 응용한 예측모형들이 연구되고 있다. 특히 최근에는 딥러닝(Deep-Learning)을 포함한 다양한 기계학습기법(Machine Learning Methods)을 이용해 주가지수를 예측하려는 많은 시도들이 진행되고 있다. 전통적인 주식투자거래의 분석기법으로는 기본적 분석과 기술적 분석방법이 사용되지만 보다 단기적인 거래예측이나 통계학적, 수리적 기법을 응용하기에는 기술적 분석 방법이 보다 유용한 측면이 있다. 이러한 기술적 지표들을 이용하여 진행된 대부분의 연구는 미래시장의 (보통은 다음 거래일) 주가 등락을 이진분류-상승 또는 하락-하여 주가를 예측하는 모형을 연구한 것이다. 하지만 이러한 이진분류로는 추세를 예측하여 매매시그널을 파악하거나, 포트폴리오 리밸런싱(Portfolio Rebalancing)의 신호로 삼기에는 적합치 않은 측면이 많은 것 또한 사실이다. 이에 본 연구에서는 기존의 주가지수 예측방법인 이진 분류 (binary classification) 방법에서 주가지수 추세를 (상승추세, 박스권, 하락추세) 다분류 (multiple classification) 체계로 확장하여 주가지수 추세를 예측하고자 한다. 이러한 다 분류 문제 해결을 위해 기존에 사용하던 통계적 방법인 다항로지스틱 회귀분석(Multinomial Logistic Regression Analysis, MLOGIT)이나 다중판별분석(Multiple Discriminant Analysis, MDA) 또는 인공신경망(Artificial Neural Networks, ANN)과 같은 기법보다는 예측성과의 우수성이 입증된 다분류 Support Vector Machines(Multiclass SVM, MSVM)을 사용하고, 이 모델의 성능을 향상시키기 위한 래퍼(wrapper)로서 유전자 알고리즘(Genetic Algorithm)을 이용한 최적화 모델을 제안한다. 특히 GA-MSVM으로 명명된 본 연구의 제안 모형에서는 MSVM의 커널함수 매개변수, 그리고 최적의 입력변수 선택(feature selection) 뿐만이 아니라 학습사례 선택(instance selection)까지 최적화하여 모델의 성능을 극대화 하도록 설계하였다. 제안 모형의 성능을 검증하기 위해 국내주식시장의 실제 데이터를 적용해본 결과 ANN이나 CBR, MLOGIT, MDA와 같은 기존 데이터마이닝 기법들이나 인공지능 알고리즘은 물론 현재까지 가장 우수한 예측 성과를 나타내는 것으로 알려져 있던 전통적인 다분류 SVM 보다도 제안 모형이 보다 우수한 예측성과를 보임을 확인할 수 있었다. 특히 주가지수 추세 예측에 있어서 학습사례의 선택이 매우 중요한 역할을 하는 것으로 확인 되었으며, 모델의 성능의 개선효과에 다른 요인보다 중요한 요소임을 확인할 수 있었다.

인공지능 기술 기반 인슈어테크와 디지털보험플랫폼 성공사례 분석: 중국 평안보험그룹을 중심으로 (Analysis of Success Cases of InsurTech and Digital Insurance Platform Based on Artificial Intelligence Technologies: Focused on Ping An Insurance Group Ltd. in China)

  • 이재원;오상진
    • 지능정보연구
    • /
    • 제26권3호
    • /
    • pp.71-90
    • /
    • 2020
  • 최근 전 세계 보험업계에도 기계학습, 자연어 처리, 딥러닝 등의 인공지능 기술 활용을 통한 디지털 전환이 급속도로 확산하고 있다. 이에 따라 인공지능 기술을 기반으로 한 인슈어테크와 플랫폼 비즈니스 성공을 이룬 해외 보험사들도 증가하고 있다. 대표적으로 중국 최대 민영기업인 평안보험그룹은 '금융과 기술', '금융과 생태계'를 기업의 핵심 키워드로 내세우며 끊임없는 혁신에 도전한 결과, 인슈어테크와 디지털플랫폼 분야에서 괄목할만한 성과를 보이며 중국의 글로벌 4차 산업혁명을 선도하고 있다. 이에 본 연구는 평안보험그룹 인슈어테크와 플랫폼 비즈니스 활동을 ser-M 분석 모델을 통해 분석하여 국내 보험사들의 인공지능 기술기반 비즈니스 활성화를 위한 전략적 시사점을 제공하고자 했다. ser-M 분석 모델은 기업의 경영전략을 주체, 환경, 자원, 메커니즘 관점에서 통합적으로 해석이 가능한 프레임으로, 최고경영자의 비전과 리더십, 기업의 역사적 환경, 다양한 자원 활용, 독특한 메커니즘 관계가 통합적으로 해석되도록 연구하였다. 사례분석 결과, 평안보험은 안면·음성·표정 인식 등 핵심 인공지능 기술을 활용하여 세일즈, 보험인수, 보험금 청구, 대출 서비스 등 업무 전 영역을 디지털로 혁신함으로써 경비 절감과 고객서비스 발전을 이루었다. 또한 '중국 내 온라인 데이터'와 '회사가 축적한 방대한 오프라인 데이터 및 통찰력'을 인공지능, 빅데이터 분석 등 신기술과 결합하여 금융 서비스와 디지털 서비스 사업이 통합된 디지털 플랫폼을 구축하였다. 이러한 평안보험그룹의 성공 배경을 ser-M 관점에서 분석해 보면, 창업자 마밍즈 회장은 4차 산업혁명 시대의 디지털 기술발전, 시장경쟁 및 인구 구조의 변화를 빠르게 포착하여 새로운 비전을 수립하고 디지털 기술중시의 민첩한 리더십을 발휘하였다. 환경변화에 대응한 창업자 주도의 강력한 리더십을 바탕으로 인공지능 기술 투자, 우수 전문인력 확보, 빅데이터 역량 강화 등 내부자원을 혁신하고, 외부 흡수역량의 결합, 다양한 업종 간의 전략적 제휴를 통해 인슈어테크와 플랫폼 비즈니스를 성공적으로 끌어냈다. 이와 같은 성공사례 분석을 통하여 인슈어테크와 디지털플랫폼 도입을 본격 준비하고 있는 국내 보험사들에게 디지털 시대에 필요한 경영 전략과 리더십에 대한 시사점을 줄 수 있다.