DOI QR코드

DOI QR Code

A Study on Wearable Emotion Monitoring System Under Natural Conditions Applying Noncontact Type Inductive Sensor

자연 상태에서의 인간감성 평가를 위한 비접촉식 인덕티브 센싱 기반의 착용형 센서 연구

  • 조현승 (연세대학교 생활과학대학 심바이오틱라이프텍연구원 ) ;
  • 양진희 (연세대학교 생활과학대학 심바이오틱라이프텍연구원) ;
  • 이상엽 (건국대학교 글로컬캠퍼스 ICT융합공학부 바이오메디컬공학과 ) ;
  • 이정환 (건국대학교 글로컬캠퍼스 ICT융합공학부 바이오메디컬공학과 ) ;
  • 이주현 (연세대학교 생활과학대학 의류환경학과 ) ;
  • 김훈 (성균관대학교 바이오의약융합전공 )
  • Received : 2023.07.17
  • Accepted : 2023.08.17
  • Published : 2023.09.30

Abstract

This study develops a time-varying system-based noncontact fabric sensor that can measure cerebral blood-flow signals to explore the possibility of brain blood-signal detection and emotional evaluation. The textile sensor was implemented as a coil-type sensor by combining 30 silver threads of 40 deniers and then embroidering it with the computer machine. For the cerebral blood-flow measurement experiment, subjects were asked to attach a coil-type sensor to the carotid artery area, wear an electrocardiogram (ECG) electrode and a respiration (RSP) measurement belt. In addition, Doppler ultrasonography was performed using an ultrasonic diagnostic device to measure the speed of blood flow. The subject was asked to wear Meta Quest 2, measure the blood-flow change signal when viewing the manipulated image visual stimulus, and fill out an emotional-evaluation questionnaire. The measurement results show that the textile-sensor-measured signal also changes with a change in the blood-flow rate signal measured using the Doppler ultrasonography. These findings verify that the cerebral blood-flow signal can be measured using a coil-type textile sensor. In addition, the HRV extracted from ECG and PLL signals (textile sensor signals) are calculated and compared for emotional evaluation. The comparison results show that for the change in the ratio because of the activation of the sympathetic and parasympathetic nervous systems due to visual stimulation, the values calculated using the textile sensor and ECG signals tend to be similar. In conclusion, a the proposed time-varying system-based coil-type textile sensor can be used to study changes in the cerebral blood flow and monitor emotions.

본 연구에서는 뇌혈류 신호를 측정할 수 있는 시변자계 기반의 비접촉식 직물센서를 설계하여 뇌혈류 신호 검출 및 감성평가의 가능성을 탐색하고자 하였다. 직물센서는 40 denier의 은사를 30합사 한 후 컴퓨터 기계 자수하여 코일형 센서로 구현하였다. 뇌혈류 측정 실험을 위해 코일형 센서를 경동맥 부위에 부착하고, ECG (Electrocardiogram) 전극과 RSP (Respiration) 측정 벨트를 부착 및 착용하도록 하였으며, 동시에 초음파 진단기기를 사용해 도플러 초음파 검사(Doppler Ultrasonography)를 수행하여 혈류 속도를 측정하였다. 피험자에게 Meta Quest 2를 착용시키고, 실험을 위해 조작된 영상 시각 자극을 보여주면서 혈류 신호를 측정한 후 시각 자극에 대한 감성평가 설문지를 작성하도록 하였다. 측정 결과, 도플러 초음파 검사를 통해 측정된 혈류 속도 신호에 변화가 생길 때 직물센서로 측정한 신호도 함께 변화하는 것으로 나타났다. 이를 통해 코일형 직물센서를 이용하여 뇌혈류활동 신호를 측정할 수 있다는 것을 검증하였다. 또한, 감성평가를 위하여 ECG 신호와 PLL 신호(직물센서 신호)에서 추출한 HRV를 계산해서 비교한 결과, 시각 자극으로 인한 교감신경계와 부교감신경계의 활성화에 따른 비율의 변화에 대해서는 직물센서로 측정한 신호와 ECG 신호를 이용해 계산한 값이 비슷한 경향을 보이는 것으로 나타났다. 결론적으로, 본 연구에서 개발된 시변자계 기반의 코일형 직물 센서를 통해 뇌혈류 변화 측정 및 감성 모니터링이 가능할 것으로 사료된다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.2023R1A2C1004216 / No.2023R1A2C1005471). Hoon Kim is supported by the Brain Korea 21 Four Project and the National Research Foundation of Korea (NRF) funded by the Korean government (MSIT) (2022M3C1A309202212).

References

  1. Association of Research on Medical Instrumentation Engineering (2002). 의용계측공학 [Medical instrumentation engineering]. Seoul: Yoemingak, 189-196, 322-323.
  2. Beck, A. T., Epstein, N., Brown, G., & Steer, R. (1988). Beck Anxiety Inventory [Database record]. APA PsycTests. DOI: 10.1037/t02025-000
  3. Cha, W. Y., Shin, D. K., & Shin, D. I. (2010). Analysis and comparison of the emotion recognition by multiple bio-signal. Proceedings of the Korea Computer Science Conference, 37(1), 104-105.
  4. Chon, K. H., Oh, J. Y., Park, S. H., Jeong Y. M., & Yang, D. I. (2010). A study on algorithm of emotion analysis using EEG and HRV, Journal of Korean Society of Computer Information, 15(10), 105-112. Retrieved from https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001490108 108
  5. Dillard, J., & Anderson, J. (2004). The role of fear in persuasion. Psychology & Marketing, 21(11), 909-926. https://doi.org/10.1002/mar.20041
  6. Agrafioti, F., Hatzinakos, D., Anderson, A. K. (2012). ECG pattern analysis for emotion detection, IEEE Transactions on Affective Computing, 3(1), 102-115. DOI: 10.1109/T-AFFC.2011.28
  7. Gabriel, S., Lau, R. W., & Gabriel, C. (1996). The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Physics in Medicine & Biology, 41(11), 2271-2293. Retrieved from https://iopscience.iop.org/article/10.1088/0031-9155/41/11/003/pdf
  8. Gi, S. O., Lee, Y. J., Koo, H. R., Khang, S, A., Park, H. J., Kim, K. S., Lee, J. H., & Lee, J. W. (2013). An analysis on the effect of the shape features of the textile electrode on the non-contact type of sensing of cardiac activity based on the magnetic-induced conductivity principle, The Transactions of the Korean Institute of Electrical Engineers, 62(6), 803-810. DOI: 10.5370/KIEE.2013.62.6.803
  9. Gi, S. O., Lee, Y. J., Koo, H. R., Khang, S. A., Kim, K. N., Kang, S. J., Lee, J. H., & Lee, J. W. (2015). Application of a textile-based inductive sensor for the vital sign monitoring. Journal of Electrical Engineering & Technology, 10(1), 364-371. DOI: 10.5370/JEET.2015.10.1.364
  10. Gi, S. O., Lee, Y. J., Koo, H. R., Lee, S. P., Lee, K. H., Kim, K. N., Kang, S. J., Lee, J. H., & Lee, J. W. (2015). The effect of electrode designs based on the anatomical heart location for the non- contact heart activity measurement, Journal of Medical Systems, 39, 191, Published online: 21 October 2015. DOI: 10.1007/s10916-015-0339-7
  11. Jang, E. H., Eum, Y. J., Kim, S. H., & Sohn, J. H. (2011). Discrimination of three emotions using parameters of autonomic nervous system responses, Proceedings of the ergonomics society of Korea, 369-363.
  12. Vedru, J., Gordon, R., Humal, L. H., & Trolla, J. (2011). Modeling of an inductive sensor of the Foucault cardiogram, Estonian Journal of Engineering, 17(3), 252-270. DOI: 10.3176/eng.2011.3.06.
  13. Kim, J. H., & Andre, E. (2008). Emotion recognition based on physiological changes in music listening, IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(12), 2067-2083. DOI: 10.1109/TPAMI.2008.26
  14. Koo, H. R., Lee, Y. J., Gi, S. O., Khang, S. A., Lee, J. H., Lee, J. H., Lim, M. G., Park, H. J., & Lee, J. W. (2014). The effect of textile-based inductive coil sensor positions for heart rate monitoring. Journal of Medical Systems, 38, 2, Published online: 31 January 2014. DOI: 10.1007/s10916-013-0002-0
  15. Koo, H. R., Lee, Y. J., Gi, S. O., Lee, S. P., Kim, K. N., Kang, S. J., Lee, J. W., & Lee, J. H. (2015). Effect of module design for a garment-type heart activity monitoring wearable system based on non-contact type sensing, Journal of the Korean Society of Clothing and Textiles, 39(3), 369-378. DOI: 10.5850/JKSCT.2015.39.3.369
  16. Koo, H. R., Lee, J. W., & Lee, J. H. (2018). Garment function module to reduce motion artifacts in heart-activity-sensing clothing based on a magnetic-induced conductivity sensing method. Textile Research Journal, 88(19), 2190-2205. DOI: 10.1177/0040517517716909
  17. Lee, K. H. (1998). Human sensibility and emotion in sensibility ergonomics. Science of Emotion & Sensibility, 1(1), 113-122. Retrieved from https://koreascience.kr/article/JAKO199811919737953.page
  18. Lee, J. E., & Yoo, S. K. (2013). The design of feature selection classifier based on physiological signal for emotion detection, Journal of The Institute of Electronics Engineers of Korea, 50(11), 2910-2920. DOI: 10.5573/ieek.2013.50.11.206
  19. Li, M., & Lu, B. L. (2009). Emotion classification based on gamma-band EEG, 31th Annual International Conference of the IEEE EMBS, 1323-1326, Minnesota, USA, Sep., 2009.
  20. Murugappan, M., Ramachandran, N., & Sazali, Y. (2010). Classification of human emotion from EEG using discrete wavelet transform, Journal of Biomedical Science and Engineering, 3(4), 390-396. DOI: 10.4236/jbise.2010.34054
  21. Nabi, R. L. (2002). The theoretical versus the lay meaning of disgust: Implications for emotion research. Cognition & Emotion, 16(5), 695-703. DOI: 10.1080/02699930143000437
  22. Park, B. J., Jang, E. H., Chung, M. A., Kim, S. H., & Sohn, J. H. (2012). Emotion classification using physiological signals. Proceedings of the Ergonomics Society of Korea, 370-374.
  23. Park, J. Y., Park, J. H., Park, J. H., & Park, D. S. (2003). Measurement of human sensibility by bio-signal analysis. Proceedings of the Korean Society of Mechanical Engineers, 935-939.
  24. Steffen, M., Aleksandrowicz, A., & Leonhardt, S. (2007). Mobile noncontact monitoring of heart and lung activity. Biomedical Circuits and Systems, IEEE Transactions on, 1(4), 250-257. DOI: 10.1109/TBCAS.2008.915633
  25. Whang, M. C., & Park, S. I. (2014). Brain-heart neural connectivity and emotion, Journal of the Architectural Institute of Korea, 58(9), 59-62.