• 제목/요약/키워드: 금융시장

Search Result 1,041, Processing Time 0.028 seconds

Dynamic Changes of Urban Spatial Structure in Seoul: Focusing on a Relative Office Price Gradient (오피스 가격경사계수를 이용한 서울시 도시공간구조 변화 분석)

  • Ryu, Kang Min;Song, Ki Wook
    • Land and Housing Review
    • /
    • v.12 no.3
    • /
    • pp.11-26
    • /
    • 2021
  • With the increasing demand for office space, there have been questions on how office rent distribution produces a change in the urban spatial structure in Seoul. The purpose of this paper is to investigate a relative price gradient and to present a time-series model that can quantitatively explain the dynamic changes in the urban spatial structure. The analysis was dealt with office rent above 3,306 m2 for the past 10 years from 1Q 2010 to 4Q 2019 within Seoul. A modified repeat sales model was employed. The main findings are briefly summarized as follows. First, according to the estimates of the office price gradient in the three major urban centers of Seoul, the CBD remained at a certain level with little change, while those in the GBD and the YBD continued to increase. This result reveals that the urban form of Seoul has shifted from monocentric to polycentric. This shows that the spatial distribution of companies has gradually accelerated decentralized concentration implying that the business networks have become significant. Second, contrary to small and medium-sized office buildings that have undertaken no change in the gradient, large office buildings have seen an increase in the gradient. The relative price gradients in small and medium-sized buildings were inversely proportional among the CBD, the GBD, and the YBD, implying their heterogeneous submarkets by office rent movements. Presumably, those differences in the submarkets were attributed to investment attraction, industrial competition, and the credit and preference of tenants. The findings are consistent with the hierarchical system identified in the Seoul 2030 Plan as well as the literature about Seoul's urban form. This research claims that the proposed method, based on the modified repeat sales model, is useful in understanding temporal dynamic changes. Moreover, the findings can provide implications for urban growth strategies under rapidly changing market conditions.

The Exploration of New Business Areas in the Age of Economic Transformation : a Case of Korean 'Hidden Champions' (Small and Medium Niche Enterprises (경제구조 전환기에서 새로운 비즈니스 영역의 창출 : 강소기업의 성공함정과 신시장 개척)

  • Lee, Jangwoo
    • Korean small business review
    • /
    • v.31 no.1
    • /
    • pp.73-88
    • /
    • 2009
  • This study examines the characteristics of 24 Korean hidden champions such as key success factors, core competences, strategic problems, and desirable future directions. The study categorized them into 8 types with Danny Miller's four trajectories and top manager's decision making style(rationality and passion). Danny Miller argued in his book, Icarus paradox, that outstanding firms will extend their orientations until they reach dangerous extremes and their momentum will result in common trajectories of decline. He suggested four very common success types: Craftsmen, Builders, Pioneers, Salesmen. He also suggested common trajectories of decline:Focusing(from Craftsmen to Tinkers), Venturing(from Builders to Imperialists), Inventing(from Pioneers to Escapists), Decoupling(from Salesmen to Drifts). In Korea, successful startups appear to possess three kinds of drive: Technology-drive, Vision-drive, Market-drive. Successful technology-driven firms tend to grow as craftsmen or pioneers. Successful vision-driven and market-driven ones tend to grow as builders and salesmen respectively. Korean top managers or founders seem to have two kinds of decision making style: Passion-based and Rationality-bases. Passion-based(passionate) entrepreneurs are biased towards action or proactiveness in competing and getting things done. Rationality- based ones tend to emphasis the effort devoted to scanning and analysing information to better understand a company's threats, opportunities and options. Consequently this study suggested 4*2 types of Korean hidden champions: (1) passionate craftsmen, (2) rational craftsmen, (3) passionate builders, (4) rational builders, (5) passionate pioneers, (6) rational pioneers, (7) passionate salesmen, (8) rational salesmen. These 8 type firms showed different success stories and appeared to possess different trajectories of decline. These hidden champions have acquired competitive advantage within domestic or globally niche markets in spite of the weak market power and lack of internal resources. They have maintained their sustainable competitiveness by utilizing three types of growth strategy; (1) penetrating into the global market, (2) exploring new service market, (3) occupying the domestic market. According to the types of growth strategy, these firms showed different financial outcomes and possessed different issues for maintaining their competitiveness. This study found that Korean hidden champions were facing serious challenges from the transforming economic structure these days and possessed the decline potential from their success momentum or self-complacence. It argues that they need to take a new growth engine not to decline in the turbulent environment. It also discusses how firms overcome the economic crisis and find a new business area in promising industries for the future. It summarized the recent policy of Korean government called as "Green Growth" and discussed how small firms utilize such benefits and supports from the government. Other implications for firm strategies and governmental policies were discussed.

Venture Capital Investment and the Performance of Newly Listed Firms on KOSDAQ (벤처캐피탈 투자에 따른 코스닥 상장기업의 상장실적 및 경영성과 분석)

  • Shin, Hyeran;Han, Ingoo;Joo, Jihwan
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.2
    • /
    • pp.33-51
    • /
    • 2022
  • This study analyzes newly listed companies on KOSDAQ from 2011 to 2020 for both firms having experience in attracting venture investment before listing (VI) and those without having experience in attracting venture investment (NVI) by examining differences between two groups (VI and NVI) with respect to both the level of listing performance and that of firm performance (growth) after the listing. This paper conducts descriptive statistics, mean difference, and multiple regression analysis. Independent variables for regression models include VC investment, firm age at the time of listing, firm type, firm location, firm size, the age of VC, the level of expertise of VC, and the level of fitness of VC with investment company. Throughout this paper, results suggest that listing performance and post-listed growth are better for VI than NVI. VC investment shows a negative effect on the listing period and a positive effect on the sales growth rate. Also, the amount of VC investment has negative effects on the listing period and positive effects on the market capitalization at the time of IPO and on sales growth among growth indicators. Our evidence also implies a significantly positive effect on growth after listing for firms which belong to R&D specialized industries. In addition, it is statistically significant for several years that the firm age has a positive effect on the market capitalization growth rate. This shows that market seems to put the utmost importance on a long-term stability of management capability. Finally, among the VC characteristics such as the age of VC, the level of expertise of VC, and the level of fitness of VC with investment company, we point out that a higher market capitalization tends to be observed at the time of IPO when the level of expertise of anchor VC is high. Our paper differs from prior research in that we reexamine the venture ecosystem under the outbreak of coronavirus disease 2019 which stimulates the degradation of the business environment. In addition, we introduce more effective variables such as VC investment amount when examining the effect of firm type. It enables us to indirectly evaluate the validity of technology exception policy. Although our findings suggest that related policies such as the technology special listing system or the injection of funds into the venture ecosystem are still helpful, those related systems should be updated in a more timely fashion in order to support growth power of firms due to the rapid technological development. Furthermore, industry specialization is essential to achieve regional development, and the growth of the recovery market is also urgent.

Optimization of Multiclass Support Vector Machine using Genetic Algorithm: Application to the Prediction of Corporate Credit Rating (유전자 알고리즘을 이용한 다분류 SVM의 최적화: 기업신용등급 예측에의 응용)

  • Ahn, Hyunchul
    • Information Systems Review
    • /
    • v.16 no.3
    • /
    • pp.161-177
    • /
    • 2014
  • Corporate credit rating assessment consists of complicated processes in which various factors describing a company are taken into consideration. Such assessment is known to be very expensive since domain experts should be employed to assess the ratings. As a result, the data-driven corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has received considerable attention from researchers and practitioners. In particular, statistical methods such as multiple discriminant analysis (MDA) and multinomial logistic regression analysis (MLOGIT), and AI methods including case-based reasoning (CBR), artificial neural network (ANN), and multiclass support vector machine (MSVM) have been applied to corporate credit rating.2) Among them, MSVM has recently become popular because of its robustness and high prediction accuracy. In this study, we propose a novel optimized MSVM model, and appy it to corporate credit rating prediction in order to enhance the accuracy. Our model, named 'GAMSVM (Genetic Algorithm-optimized Multiclass Support Vector Machine),' is designed to simultaneously optimize the kernel parameters and the feature subset selection. Prior studies like Lorena and de Carvalho (2008), and Chatterjee (2013) show that proper kernel parameters may improve the performance of MSVMs. Also, the results from the studies such as Shieh and Yang (2008) and Chatterjee (2013) imply that appropriate feature selection may lead to higher prediction accuracy. Based on these prior studies, we propose to apply GAMSVM to corporate credit rating prediction. As a tool for optimizing the kernel parameters and the feature subset selection, we suggest genetic algorithm (GA). GA is known as an efficient and effective search method that attempts to simulate the biological evolution phenomenon. By applying genetic operations such as selection, crossover, and mutation, it is designed to gradually improve the search results. Especially, mutation operator prevents GA from falling into the local optima, thus we can find the globally optimal or near-optimal solution using it. GA has popularly been applied to search optimal parameters or feature subset selections of AI techniques including MSVM. With these reasons, we also adopt GA as an optimization tool. To empirically validate the usefulness of GAMSVM, we applied it to a real-world case of credit rating in Korea. Our application is in bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. The experimental dataset was collected from a large credit rating company in South Korea. It contained 39 financial ratios of 1,295 companies in the manufacturing industry, and their credit ratings. Using various statistical methods including the one-way ANOVA and the stepwise MDA, we selected 14 financial ratios as the candidate independent variables. The dependent variable, i.e. credit rating, was labeled as four classes: 1(A1); 2(A2); 3(A3); 4(B and C). 80 percent of total data for each class was used for training, and remaining 20 percent was used for validation. And, to overcome small sample size, we applied five-fold cross validation to our dataset. In order to examine the competitiveness of the proposed model, we also experimented several comparative models including MDA, MLOGIT, CBR, ANN and MSVM. In case of MSVM, we adopted One-Against-One (OAO) and DAGSVM (Directed Acyclic Graph SVM) approaches because they are known to be the most accurate approaches among various MSVM approaches. GAMSVM was implemented using LIBSVM-an open-source software, and Evolver 5.5-a commercial software enables GA. Other comparative models were experimented using various statistical and AI packages such as SPSS for Windows, Neuroshell, and Microsoft Excel VBA (Visual Basic for Applications). Experimental results showed that the proposed model-GAMSVM-outperformed all the competitive models. In addition, the model was found to use less independent variables, but to show higher accuracy. In our experiments, five variables such as X7 (total debt), X9 (sales per employee), X13 (years after founded), X15 (accumulated earning to total asset), and X39 (the index related to the cash flows from operating activity) were found to be the most important factors in predicting the corporate credit ratings. However, the values of the finally selected kernel parameters were found to be almost same among the data subsets. To examine whether the predictive performance of GAMSVM was significantly greater than those of other models, we used the McNemar test. As a result, we found that GAMSVM was better than MDA, MLOGIT, CBR, and ANN at the 1% significance level, and better than OAO and DAGSVM at the 5% significance level.

Robo-Advisor Algorithm with Intelligent View Model (지능형 전망모형을 결합한 로보어드바이저 알고리즘)

  • Kim, Sunwoong
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.39-55
    • /
    • 2019
  • Recently banks and large financial institutions have introduced lots of Robo-Advisor products. Robo-Advisor is a Robot to produce the optimal asset allocation portfolio for investors by using the financial engineering algorithms without any human intervention. Since the first introduction in Wall Street in 2008, the market size has grown to 60 billion dollars and is expected to expand to 2,000 billion dollars by 2020. Since Robo-Advisor algorithms suggest asset allocation output to investors, mathematical or statistical asset allocation strategies are applied. Mean variance optimization model developed by Markowitz is the typical asset allocation model. The model is a simple but quite intuitive portfolio strategy. For example, assets are allocated in order to minimize the risk on the portfolio while maximizing the expected return on the portfolio using optimization techniques. Despite its theoretical background, both academics and practitioners find that the standard mean variance optimization portfolio is very sensitive to the expected returns calculated by past price data. Corner solutions are often found to be allocated only to a few assets. The Black-Litterman Optimization model overcomes these problems by choosing a neutral Capital Asset Pricing Model equilibrium point. Implied equilibrium returns of each asset are derived from equilibrium market portfolio through reverse optimization. The Black-Litterman model uses a Bayesian approach to combine the subjective views on the price forecast of one or more assets with implied equilibrium returns, resulting a new estimates of risk and expected returns. These new estimates can produce optimal portfolio by the well-known Markowitz mean-variance optimization algorithm. If the investor does not have any views on his asset classes, the Black-Litterman optimization model produce the same portfolio as the market portfolio. What if the subjective views are incorrect? A survey on reports of stocks performance recommended by securities analysts show very poor results. Therefore the incorrect views combined with implied equilibrium returns may produce very poor portfolio output to the Black-Litterman model users. This paper suggests an objective investor views model based on Support Vector Machines(SVM), which have showed good performance results in stock price forecasting. SVM is a discriminative classifier defined by a separating hyper plane. The linear, radial basis and polynomial kernel functions are used to learn the hyper planes. Input variables for the SVM are returns, standard deviations, Stochastics %K and price parity degree for each asset class. SVM output returns expected stock price movements and their probabilities, which are used as input variables in the intelligent views model. The stock price movements are categorized by three phases; down, neutral and up. The expected stock returns make P matrix and their probability results are used in Q matrix. Implied equilibrium returns vector is combined with the intelligent views matrix, resulting the Black-Litterman optimal portfolio. For comparisons, Markowitz mean-variance optimization model and risk parity model are used. The value weighted market portfolio and equal weighted market portfolio are used as benchmark indexes. We collect the 8 KOSPI 200 sector indexes from January 2008 to December 2018 including 132 monthly index values. Training period is from 2008 to 2015 and testing period is from 2016 to 2018. Our suggested intelligent view model combined with implied equilibrium returns produced the optimal Black-Litterman portfolio. The out of sample period portfolio showed better performance compared with the well-known Markowitz mean-variance optimization portfolio, risk parity portfolio and market portfolio. The total return from 3 year-period Black-Litterman portfolio records 6.4%, which is the highest value. The maximum draw down is -20.8%, which is also the lowest value. Sharpe Ratio shows the highest value, 0.17. It measures the return to risk ratio. Overall, our suggested view model shows the possibility of replacing subjective analysts's views with objective view model for practitioners to apply the Robo-Advisor asset allocation algorithms in the real trading fields.

A Study on Knowledge Entity Extraction Method for Individual Stocks Based on Neural Tensor Network (뉴럴 텐서 네트워크 기반 주식 개별종목 지식개체명 추출 방법에 관한 연구)

  • Yang, Yunseok;Lee, Hyun Jun;Oh, Kyong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.25-38
    • /
    • 2019
  • Selecting high-quality information that meets the interests and needs of users among the overflowing contents is becoming more important as the generation continues. In the flood of information, efforts to reflect the intention of the user in the search result better are being tried, rather than recognizing the information request as a simple string. Also, large IT companies such as Google and Microsoft focus on developing knowledge-based technologies including search engines which provide users with satisfaction and convenience. Especially, the finance is one of the fields expected to have the usefulness and potential of text data analysis because it's constantly generating new information, and the earlier the information is, the more valuable it is. Automatic knowledge extraction can be effective in areas where information flow is vast, such as financial sector, and new information continues to emerge. However, there are several practical difficulties faced by automatic knowledge extraction. First, there are difficulties in making corpus from different fields with same algorithm, and it is difficult to extract good quality triple. Second, it becomes more difficult to produce labeled text data by people if the extent and scope of knowledge increases and patterns are constantly updated. Third, performance evaluation is difficult due to the characteristics of unsupervised learning. Finally, problem definition for automatic knowledge extraction is not easy because of ambiguous conceptual characteristics of knowledge. So, in order to overcome limits described above and improve the semantic performance of stock-related information searching, this study attempts to extract the knowledge entity by using neural tensor network and evaluate the performance of them. Different from other references, the purpose of this study is to extract knowledge entity which is related to individual stock items. Various but relatively simple data processing methods are applied in the presented model to solve the problems of previous researches and to enhance the effectiveness of the model. From these processes, this study has the following three significances. First, A practical and simple automatic knowledge extraction method that can be applied. Second, the possibility of performance evaluation is presented through simple problem definition. Finally, the expressiveness of the knowledge increased by generating input data on a sentence basis without complex morphological analysis. The results of the empirical analysis and objective performance evaluation method are also presented. The empirical study to confirm the usefulness of the presented model, experts' reports about individual 30 stocks which are top 30 items based on frequency of publication from May 30, 2017 to May 21, 2018 are used. the total number of reports are 5,600, and 3,074 reports, which accounts about 55% of the total, is designated as a training set, and other 45% of reports are designated as a testing set. Before constructing the model, all reports of a training set are classified by stocks, and their entities are extracted using named entity recognition tool which is the KKMA. for each stocks, top 100 entities based on appearance frequency are selected, and become vectorized using one-hot encoding. After that, by using neural tensor network, the same number of score functions as stocks are trained. Thus, if a new entity from a testing set appears, we can try to calculate the score by putting it into every single score function, and the stock of the function with the highest score is predicted as the related item with the entity. To evaluate presented models, we confirm prediction power and determining whether the score functions are well constructed by calculating hit ratio for all reports of testing set. As a result of the empirical study, the presented model shows 69.3% hit accuracy for testing set which consists of 2,526 reports. this hit ratio is meaningfully high despite of some constraints for conducting research. Looking at the prediction performance of the model for each stocks, only 3 stocks, which are LG ELECTRONICS, KiaMtr, and Mando, show extremely low performance than average. this result maybe due to the interference effect with other similar items and generation of new knowledge. In this paper, we propose a methodology to find out key entities or their combinations which are necessary to search related information in accordance with the user's investment intention. Graph data is generated by using only the named entity recognition tool and applied to the neural tensor network without learning corpus or word vectors for the field. From the empirical test, we confirm the effectiveness of the presented model as described above. However, there also exist some limits and things to complement. Representatively, the phenomenon that the model performance is especially bad for only some stocks shows the need for further researches. Finally, through the empirical study, we confirmed that the learning method presented in this study can be used for the purpose of matching the new text information semantically with the related stocks.

Changes in Agricultural Extension Services in Korea (한국농촌지도사업(韓國農村指導事業)의 변동(變動))

  • Fujita, Yasuki;Lee, Yong-Hwan;Kim, Sung-Soo
    • Journal of Agricultural Extension & Community Development
    • /
    • v.7 no.1
    • /
    • pp.155-166
    • /
    • 2000
  • When the marcher visited Korea in fall 1994, he was shocked to see high rise apartment buildings around the capitol region including Seoul and Suwon, resulting from rising demand of housing because of urban migration followed by second and third industrial development. After 6 years in March 2000, the researcher witnessed more apartment buildings and vinyl house complexes, one of the evidences of continued economic progress in Korea. Korea had to receive the rescue finance from International Monetary Fund (IMF) because of financial crisis in 1997. However, the sign of recovery was seen in a year, and the growth rate of Gross Domestic Products (GDP) in 1999 recorded as high as 10.7 percent. During this period, the Korean government has been working on restructuring of banks, enterprises, labour and public sectors. The major directions of government were; localization, reducing administrative manpower, limiting agricultural budgets, privatization of public enterprises, integration of agricultural organization, and easing of various regulations. Thus, the power of central government shifted to local government resulting in a power increase for city mayors and county chiefs. Agricultural extension services was one of targets of government restructuring, transferred to local governments from central government. At the same time, the number of extension offices was reduced by 64 percent, extension personnel reduced by 24 percent, and extension budgets reduced. During the process of restructuring, the basic direction of extension services was set by central Rural Development Administration Personnel management, technology development and supports were transferred to provincial Rural Development Administrations, and operational responsibilities transferred to city/county governments. Agricultural extension services at the local levels changed the name to Agricultural Technology Extension Center, established under jurisdiction of city mayor or county chief. The function of technology development works were added, at the same time reducing the number of educators for agriculture and rural life. As a result of observations of rural areas and agricultural extension services at various levels, functional responsibilities of extension were not well recognized throughout the central, provincial, and local levels. Central agricultural extension services should be more concerned about effective rural development by monitoring provincial and local level extension activities more throughly. At county level extension services, it may be desirable to add a research function to reflect local agricultural technological needs. Sometimes, adding administrative tasks for extension educators may be helpful far farmers. However, tasks such as inspection and investigation should be avoided, since it may hinder the effectiveness of extension educational activities. It appeared that major contents of the agricultural extension service in Korea were focused on saving agricultural materials, developing new agricultural technology, enhancing agricultural export, increasing production and establishing market oriented farming. However these kinds of efforts may lead to non-sustainable agriculture. It would be better to put more emphasis on sustainable agriculture in the future. Agricultural extension methods in Korea may be better classified into two approaches or functions; consultation function for advanced farmers and technology transfer or educational function for small farmers. Advanced farmers were more interested in technology and management information, while small farmers were more concerned about information for farm management directions and timely diffusion of agricultural technology information. Agricultural extension service should put more emphasis on small farmer groups and active participation of farmers in these groups. Providing information and moderate advice in selecting alternatives should be the major activities for consultation for advanced farmers, while problem solving processes may be the major educational function for small farmers. Systems such as internet and e-mail should be utilized for functions of information exchange. These activities may not be an easy task for decreased numbers of extension educators along with increased administrative tasks. It may be difficult to practice a one-to-one approach However group guidance may improve the task to a certain degree.

  • PDF

New Insights on Mobile Location-based Services(LBS): Leading Factors to the Use of Services and Privacy Paradox (모바일 위치기반서비스(LBS) 관련한 새로운 견해: 서비스사용으로 이끄는 요인들과 사생활염려의 모순)

  • Cheon, Eunyoung;Park, Yong-Tae
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.33-56
    • /
    • 2017
  • As Internet usage is becoming more common worldwide and smartphone become necessity in daily life, technologies and applications related to mobile Internet are developing rapidly. The results of the Internet usage patterns of consumers around the world imply that there are many potential new business opportunities for mobile Internet technologies and applications. The location-based service (LBS) is a service based on the location information of the mobile device. LBS has recently gotten much attention among many mobile applications and various LBSs are rapidly developing in numerous categories. However, even with the development of LBS related technologies and services, there is still a lack of empirical research on the intention to use LBS. The application of previous researches is limited because they focused on the effect of one particular factor and had not shown the direct relationship on the intention to use LBS. Therefore, this study presents a research model of factors that affect the intention to use and actual use of LBS whose market is expected to grow rapidly, and tested it by conducting a questionnaire survey of 330 users. The results of data analysis showed that service customization, service quality, and personal innovativeness have a positive effect on the intention to use LBS and the intention to use LBS has a positive effect on the actual use of LBS. These results implies that LBS providers can enhance the user's intention to use LBS by offering service customization through the provision of various LBSs based on users' needs, improving information service qualities such as accuracy, timeliness, sensitivity, and reliability, and encouraging personal innovativeness. However, privacy concerns in the context of LBS are not significantly affected by service customization and personal innovativeness and privacy concerns do not significantly affect the intention to use LBS. In fact, the information related to users' location collected by LBS is less sensitive when compared with the information that is used to perform financial transactions. Therefore, such outcomes on privacy concern are revealed. In addition, the advantages of using LBS are more important than the sensitivity of privacy protection to the users who use LBS than to the users who use information systems such as electronic commerce that involves financial transactions. Therefore, LBS are recommended to be treated differently from other information systems. This study is significant in the theoretical point of contribution that it proposed factors affecting the intention to use LBS in a multi-faceted perspective, proved the proposed research model empirically, brought new insights on LBS, and broadens understanding of the intention to use and actual use of LBS. Also, the empirical results of the customization of LBS affecting the user's intention to use the LBS suggest that the provision of customized LBS services based on the usage data analysis through utilizing technologies such as artificial intelligence can enhance the user's intention to use. In a practical point of view, the results of this study are expected to help LBS providers to develop a competitive strategy for responding to LBS users effectively and lead to the LBS market grows. We expect that there will be differences in using LBSs depending on some factors such as types of LBS, whether it is free of charge or not, privacy policies related to LBS, the levels of reliability related application and technology, the frequency of use, etc. Therefore, if we can make comparative studies with those factors, it will contribute to the development of the research areas of LBS. We hope this study can inspire many researchers and initiate many great researches in LBS fields.

Strategic Antitrust Policy Promoting Mergers to Enhance Domestic Competitiveness (기업결합규제(企業結合規制)와 국제경쟁력(國際競爭力))

  • Seong, So-mi
    • KDI Journal of Economic Policy
    • /
    • v.12 no.3
    • /
    • pp.153-172
    • /
    • 1990
  • The present paper investigates the potential value of strategic antitrust policy in an oligopolistic international market. The market is characterized by a non-cooperative Cournot-Nash equilibrium and by asymmetry in costs among firms in the world market. The model is useful for two reasons. First, it is important in the context of policy-making to examine the conditions under which it may be beneficial to relax antitrust law to enhance competitiveness. Second, the explicit derivation of the level of cost-saving required for a gain in total domestic surplus provides an empirical rule for excluding industries that do not satisfy the requirements for a socially beneficial antitrust exemption. Results of the analysis include a criterion that tells how the cost-saving and concentration effects of a merger offset each other. The criterion is derived from fairly general assumptions on demand functions and is simple enough to be applied as a part of the merger guidelines. Another interesting policy implication of our analysis is that promoting mergers would not be a beneficial strategy in a net importing industry where cost-saving opportunities are thin. Cost-saving domestic mergers are more likely to increase national welfare in exporting industries. The best candidate industries for application of strategic antitrust policy are those with the following characteristics: (i) a large potential for efficiency enhancement; (ii) high market concentration at the world but not the domestic level; (iii) a high ratio of exports to imports. Recently, many policymakers and economists in Korea have also come to believe that the appropriate antitrust policy in an era of increased foreign competition may actually be to encourage rather than to prohibit domestic mergers. The Industry Development Act of 1986 and the proposed bill for Mergers and Conversions in the Financial Industry of 1990 reflect this changing perspective on antitrust policy. Antitrust laws may burden domestic firms in the sense that they have a more constrained strategy set. Expenditures to avoid antitrust attacks could also increase costs for domestic firms. But there is no clear evidence that the impact of antitrust policy is significant enough to harm the competitiveness of domestic firms. As a matter of fact, it is necessary for domestic financial institutions to become large in scale in this era of globalization. However, the absence of empirical evidence for efficiency enhancement from mergers suggests caution in the relaxation of antitrust standards.

  • PDF

The Short-and Long-term Employment Effects of reduced Working Hours in a Putty-Clay-Model (법정근로시간 단축의 단기 및 중·장기적 고용효과 : Putty-Clay-Approach)

  • Lee, Sang-Mok
    • Journal of Labour Economics
    • /
    • v.24 no.3
    • /
    • pp.13-38
    • /
    • 2001
  • The question about whether a shorter workweek may increase employment has been a serious issue and been furiously debated among collective bargainers. The advocators recommend publicly that a reduction in standard working hours will provide benefits to the unemployed through the provision of new jobs, and also can improve the quality of life workers. The opponents argue that a shorter workweek will increase labor costs and induce firms to reduce their production levels, and consequently cut back their demand for labor. Although the debate is still continuing, considerable has been made toward achieving the goal workweek reduction. The analytical framework of this paper is a Putty-clay-model, in which the short-and long-term impacts of changes in working time on the employment associated with the interrelations of wages, prices, hourly labour productivity, the firm's labor demand, business cycle and economic growth etc. must be analyzed.

  • PDF