• Title/Summary/Keyword: 금속염화물

Search Result 99, Processing Time 0.033 seconds

Effect of Metal Chloride Coloring Liquids on Color and Strength Changes of Tetragonal Zirconia Polycrystals (금속염화물 착색제 침투가 정방정 지르코니아 다결정체의 색조와 강도 변화에 미치는 영향)

  • Oh, Jong-Jin;Noh, Hyeong-Rok
    • Journal of dental hygiene science
    • /
    • v.15 no.5
    • /
    • pp.577-584
    • /
    • 2015
  • The purpose of this study was to evaluate the effect of metal chloride infiltration treatment on color and strength changes of the yttria-stabilized tetragonal zirconia polycrystals (Y-TZP). Fifty disc specimens were prepared with a Y-TZP powder (ZPEX; Tosoh, Japan). Thirty different metal chloride solutions containing 0.03~0.08 wt% chromium and 0.03~0.07 wt% terbium ions were prepared. Presintered Y-TZP specimens were soaked in metal chloride coloring liquids for 3 minutes and sintered in air at $1,450^{\circ}C$ for 2 hours. The color of the specimens was measured with spectrophotometer and color difference (${\Delta}E^*$) was obtained based on the CIE $L^*$, $a^*$, $b^*$ color coordinate values. To evaluate the effect of metal chloride infiltration strength changes, the biaxial flexural test was performed at crosshead speed 0.5 mm/min. Colors of the sintered Y-TZP showed the colors of Vita shade guide A1, A2 and A3 with the infiltration of chromium and terbium chloride solutions. Density of the sintered Y-TZP increased by the infiltration of chromium and terbium chloride solutions. Bi-axial flexural strength of the sintered Y-TZP did not show statistically significant differences by the infiltration of chromium and terbium chloride solutions (p>0.05). Chromium and terbium chloride did not affect the crystal phase of zirconia, and all specimens showed tetragonal phase. Accordingly, this study suggests that chromium and terbium chlorides can make colored zirconia while adding in a liquid form. The color of colored zirconia differ from that of vita shade guide but it can use all ceramic restoration as substructure in dental clinic.

Synthesis of Biodiesel from Soybean Oil Using Lewis Acidic Ionic Liquids Containing Metal Chloride Salts (금속염화물을 첨가한 루이스산 이온성 액체 촉매를 이용한 대두유로부터 바이오디젤 합성)

  • Choi, Jae Hyung;Park, Yong Beom;Lee, Suk Hee;Cheon, Jae Kee;Choi, Jae Wook;Woo, Hee Chul
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.643-648
    • /
    • 2010
  • Production of biodiesel from soybean oil catalyzed by Lewis acidic ionic liquids(ILs) containing metal chloride salts was investigated in this study. Metal chloride salts, such as $SnCl_2$, $ZnCl_2$, $AlCl_3$, $FeCl_3$ and CuCl, were screened for oil transesterification in the range of 363-423 K. Among these metal chlorides, tin chloride showed particularly high catalytic property for the oil transesterification. Similarly, among these Lewis acidic ionic liquid catalysts, $[Me_3NC_2H_4OH]Cl-2SnCl_2$ resulted in a high fatty acid methyl esters(FAMEs) content of 91.1% under the following reaction conditions: 403 K, 14 h, and a molar ratio of 1:12:0.9 (oil:methanol:catalyst). Unlike the pure tin chloride catalysts, Lewis acidic ILs containing tin chloride $[Me_3NC_2H_4OH]Cl-2SnCl_2$ catalyst could be recycled up to five times without any significant loss of activity by separating from the FAMEs with simple decantation. The Lewis acidity and high moisture-stability of this catalyst appeared to be responsible for the excellent catalytic performance. The effects of reaction time and the molar ratio of methanol/catalyst to oil on the FAMEs production were also studied in this work.

Simultaneous Removal of Mercury and NO by Metal Chloride-loaded V2O5-WO3/TiO2-based SCR catalysts (금속염화물이 담지된 V2O5-WO3/TiO2 계 SCR 촉매에 의한 수은 및 NO 동시 제거)

  • Ham, Sung-Won
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.172-180
    • /
    • 2017
  • Thermodynamic evaluation indicates that nearly 100% conversion of elemental mercury to oxidized mercury can be attained by HCl of several tens of ppm level at the temperature window of SCR reaction. Cu-, Fe-, Mn-chloride loaded $V_2O_5-WO_3/TiO_2$ catalysts revealed good NO removal activity at the operating temperature window of SCR process. The catalysts with high desorption temperature indicating adsorption strength of $NH_3$ revealed higher NO removal activity. The HCl fed to the reaction gases promoted the oxidation of mercury. However, the activity for the oxidation of elemental mercury to oxidized mercury by HCl was suppressed by $NH_3$ inhibiting the adsorption of HCl to catalyst surface under SCR reaction condition containing $NH_3$ for NO removal. Metal chloride loaded $V_2O_5-WO_3/TiO_2$ catalysts showed much higher activity for mercury oxidation than $V_2O_5-WO_3/TiO_2$ catalyst without metal chloride under SCR reaction condition. This is primarily attributed to the participation of chloride in metal chloride on the catalyst surface promoting the oxidation of elemental mercury.

Transient State Theory of Significant Liquid Structure Applied to Alkali Earth Chlorides (용융 알칼리토금속 염화물에 대한 천이상태 이론의 적용)

  • Ahn, Woon-Sun;Chang, Sei-Hun
    • Journal of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.109-112
    • /
    • 1970
  • 액체구조의 천이상태 이론을 알칼리토금속 염화물에 적용시켜서 상태합을 유도하였다. 이 상태합으로부터 $SrCl_2$$BaCl_2$의 증기압, 몰부피, 엔트로피등의 열역학적 성질을 계산하여 실험치와 비교하였으며, 천이상태 이론이 용융염에도 잘 적용된다는 결론을 얻었다.

  • PDF

Investigation of Water-Washing Process Parameters for Removal of Alkali Metals and Chlorides from Electric Arc Furnace Dust (EAFD) (전기 제강로 분진(EAFD)으로부터 알칼리 금속 및 염화물 제거를 위한 수 세척 공정 운영인자 조사)

  • Lee, Han Saem;Park, Da so mi;Ha, Jong Gil;Shin, Hyun Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.11
    • /
    • pp.626-633
    • /
    • 2017
  • The present study investigated the effect of a water-washing process, which is part of the acid hydrometallurgical process for recovery of high purity of zinc, on the removal of alkali metals and chlorides (Na, K, Ca, Cl) from Electric arc furnace dust (EAFD). Two EAFD samples with different properties were characterized by particle size, XRD and element analysis, and their washing efficiencies (%) on alkali metals and chlorides were compared according to pH, washing time, liquid to solid (L/S) ratio and number of washings. The results show that the alkali metals and chlorides could be effectively removed by the washing (at L/S ration of 3 for more than 30 min., pH 10~11) while minimizing loss of zinc (<0.1%), in which the washing efficiency was Na-78%, K-76%, Cl >99%, respectively. Na and K could be removed up to 97% and 89% respectively by 3 times of repeated washings. With increased sample volume (10 times) of the mixed (1:1, w/w) sample with two types of EAFD, it was confirmed that the pH(10~11) can be used as the main process control parameter for the washing of the alkali metals regardless of EAFD properties.

Enhancement of Ammonia Adsorption Performance by Impregnation of Metal Chlorides on Surface-Modified Activated Carbon (표면 개질 활성탄 위 금속 염화물의 첨착에 의한 암모니아 흡착 성능의 향상)

  • Song, Kang;Lim, Jeong-Hyeon;Kim, Cheol-Gyu;Park, Cheon-Sang;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.671-678
    • /
    • 2021
  • Effects of nitric acid treatment of an activated carbon and impregnation of metal chlorides on the activated carbon were investigated to improve ammonia adsorption performance. It was confirmed that functional groups such as hydroxyl and carboxyl groups were introduced onto a surface of the activated carbon with nitric acid treatment. Then, each metal chloride (NiCl2, MgCl2, CuCl2, MnCl2 or CoCl2) was impregnated onto the surface-modified activated carbon using an ultrasonic impregnation method. The physicochemical properties and ammonia adsorption performance of various impregnated activated carbons were observed. Metal chlorides were well dispersed by sonication and evenly distributed on the surface of the activated carbon. Despite the reduced specific surface area and pore volume, the surface-modified activated carbon impregnated with metal chlorides exhibited excellent ammonia adsorption performance. In particular, HNO3-NiCl2 AC prepared by impregnating NiCl2 showed the best ammonia adsorption capacity of 3.736 mmol·g-1, which was improved by about 57 times compared to that of an untreated activated carbon (0.066 mmol·g-1).

Characterization of metal-containing activated carbon derived from phenolic resin (페놀 수지로부터 유도된 금속이 함유된 활성탄의 특성화)

  • Oh, Won-Chun;Jang, Won-Cheoul;Kim, Bum-Soo
    • Analytical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.349-355
    • /
    • 2001
  • A series of micro- and mesoporous activated carbons were prepared from phenolic resin using a metal treated chemical activation methodology. $N_2$-adsorption data were used to characterize the surface properties of the produced activated carbons. Results of the surface properties and pore distribution analysis showed that phenolic resin can be successfully converted to micro- and mesoporous activated carbons with specific surface areas higher than $962.3m^2/g$. Activated carbons with porous structure were produced by controlling the amount of metal chlorides($CdCl_2$, $CuCl_2$). Pore evolvement was shown to be most effected by the incremental addition of metal chloride. From the thermodynamic DSC data, enthalpy formations(${\Delta}H$) of first endothermic reaction were increase with the incremental addition of metal chloride.

  • PDF

Hydrothermal Synthesis of Functional Materials using Common Ion Effect

  • Choe, Se-Beom;Park, Min-Gyu;Yu, Hyeon-Ung;Lee, Dong-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.486-486
    • /
    • 2011
  • 금속산화물을 제조하는 방법으로 수열반응은 wire, rod, needle, lamella, flower등 다양한 형상을 화학적으로 합성하는데 널리 이용된다. 또한 금속산화물의 특성은 구조와 형상에 의존하고, 구조와 형상에 따라 촉매, 기능성 첨가제, 초전도체등에 다양한 분야로 사용되어진다. 본 연구는 수열방법으로 각 물질의 염화물과 암모니아수를 출발물질로 사용하였고, ionization 제어를 위해 염화암모늄을 사용하여 각 물질의 전구체를 합성하였다. 형성된 각 물질의 전구체는 열분해를 통해 산화물로 제조하였다. 이들 입자의 형상 및 특성을 확인하기 위해 SEM, XRD, FT-IR, Raman을 사용하여 확인하였다.

  • PDF