100 nm-thick hydrogenated amorphous silicon $({\alpha}-Si:H)$ films were deposited on a glass and glass/30 nm Ni substrates by inductively-coupled plasma chemical vapor deposition (ICP-CVD) at temperatures ranging from 100 to $550^{\circ}C$. The sheet resistance, microstructure, phase transformation and surface roughness of the films were characterized using a four-point probe, AFM (atomic force microscope), TEM (transmission electron microscope), AES (Auger electron spectroscopy), HR-XRD(high resolution X-ray diffraction), and micro-Raman spectroscopy. A nano-thick NiSi phase was formed at substrate temperatures >$400^{\circ}C$. AFM confirmed that the surface roughness did not change as the substrate temperature increased, but it increased abruptly to 6.6 nm above $400^{\circ}C$ on the glass/30 nm Ni substrates. HR-XRD and micro-Raman spectroscopy showed that all the Si samples were amorphous on the glass substrates, whereas crystalline silicon appeared at $550^{\circ}C$ on the glass/30 nm Ni substrates. These results show that crystalline NiSi and Si can be prepared simultaneously on Ni-inserted substrates.
We fabricated the silicon nanodots using the low pressure chemical vapor deposition technique to investigate their electron field emission characteristics. Atomic force microscope measurements performed for the silicon nanodot samples having various process parameters, such as, deposition time and deposition pressure, revealed that the silicon nanodots with an average size of 20 nm, height of 5 nm, and density of $1.3\;{\times}\;10^{11}\;cm^{-2}$ were easily formed. Electron field emission measurements were performed with the silicon nanodot layer as the cathode electrode. The current-voltage curves revealed that the threshold electric field was as low as $8.3\;V/{\mu}m$ and the field enhancement factor reached as large as 698, which is compatible with the silicon cathode tips fabricated by other techniques. These electron field emission results point to the possibility of using a silicon-based light source for display devices.
The 30 nm-thick Ni layers was deposited on a flexible polyimide substrate with an e-beam evaporation. Subsequently, we deposited a Si layer using a catalytic CVD (Cat-CVD) in a hydride amorphous silicon (${\alpha}$-Si:H) process of $T_{s}=180^{\circ}C$ with varying thicknesses of 55, 75, 145, and 220 nm. The sheet resistance, phase, degree of the crystallization, microstructure, composition, and surface roughness were measured by a four-point probe, HRXRD, micro-Raman spectroscopy, FE-SEM, TEM, AES, and SPM. We confirmed that our newly proposed Cat-CVD process simultaneously formed both NiSi and crystallized Si without additional annealing. The NiSi showed low sheet resistance of < $13{\Omega}$□, while carbon (C) diffused from the substrate led the resistance fluctuation with silicon deposition thickness. HRXRD and micro-Raman analysis also supported the existence of NiSi and crystallized (>66%) Si layers. TEM analysis showed uniform NiSi and silicon layers, and the thickness of the NiSi increased as Si deposition time increased. Based on the AES depth profiling, we confirmed that the carbon from the polyimide substrate diffused into the NiSi and Si layers during the Cat-CVD, which caused a pile-up of C at the interface. This carbon diffusion might lessen NiSi formation and increase the resistance of the NiSi.
We report on electrical and mechanical properties of silicon nitride ($SiN_x$) films deposited by a plasma enhanced chemical vapor deposition (PECVD) method at $200^{\circ}C$ from $SiH_4$ highly diluted in $N_2$. The films were also prepared from $SiH_4$ diluted in He for comparison. The $N_2$ dilution was also effective in improving adhesion of the $SiN_x$ films, fascilitating construction of thin film transistors (TFTs). Metal-insulator-semiconductor (MIS) and Metal-insulator-Metal (MIM) structures were used for capacitance-voltage (C-V) and current-voltage (I-V) measurements, respectively. The resistivity and breakdown field strength of the $SiN_x$ films from $N_2$-diluted $SiH_4$ were estimated to be $1{\times}10^{13}{\Omega}{\cdot}cm$, 7.4 MV/cm, respectively. The MIS device showed a hysteresis window and a flat band voltage shift of 3 V and 0.5 V, respectively. The TFTs fabricated by using these films showed a field-effect mobility of $0.16cm^2/Vs$, a threshold voltage of 3 V, a subthreshold slope of 1.2 V/dec, and an on/off ratio of > $10^6$.
실리콘 기판으로 만든 바이오센서에서 펩타이드-항체의 접합 동특성을 회전 타원분광계로 정밀하게 측정하고 분석하였다. 극도로 낮은 몰농도의 펩타이드를 측정할 때, 시료가 놓이는 바이오센서의 표면의 불완전한 편평도와 완충용액 굴절률 변화로 인한 측정오차를 줄이기 위하여 금속박막의 유리 프리즘 대신에 실리콘 기판 위에 덱스트란 SAM을 직접 적층하여 바이오센서를 만들었다. $100{\mu}l/min$의 완충용액 주입속도에서 바이오센서에 올려진 항체 및 펩타이드의 접합특성을 각각 측정하였다. 리터당 5 ng의 낮은 항체농도에서도 항체-덱스트란 SAM 사이의 동특성을 쉽게 측정할 수 있었다. 또한 100 nM까지의 펩타이드에 대한 미세한 흡착 및 해리 특성을 정밀하게 측정할 수 있었으며, 접합 동특성 식에 이 실험결과를 피팅하여 흡착계수와 해리계수를 구할 수 있었다. 이 결과로부터 펩타이드의 평형상태의 해리상수인 $K_D$는 97 nM이었고, 이 수치는 Class I에 속함을 알 수 있었다.
다결정 실리콘에서 결정입계는 광생성된 반송자들의 재결합 중심으로 작용할 뿐 아니라 전위장벽으로 작용하여 태양전지의 변환효율을 감소시킨다. 결정입계의 영향을 줄이기 위해 열처리, 결정입계에 대한 선택적 식각, 결정입계로 함몰전극을 형성하는 방법, 다양한 전극 구조, 초박막 금속 형성 후 전극형성 등 여러가지 요소들을 조사하였다. 질소 분위기에서 $900^{\circ}C$ 전열처리, $POCl_3$ 확산을 통한 게터링, 후면전계 형성을 위한 Al 처리로 다결정 실리콘의 결함밀도를 감소시켰다. 결정입계에서의 반송자 손실을 감소시키기 위한 기판 처리로 Schimmel 식각액을 사용하였다. 이는 texturing 효과와 함께 결정입계를 선택적으로 $10{\mu}m$ 깊이로 식각하였다. 결점입계를 우선적으로 식각한 후면으로 Al을 확산하여 후면에서의 재결합 손실을 감소시켰다. 전극 핑거(grid finger) 간격이 0.4mm인 세밀한 전극 구조에 결정입계로 $0.4{\mu}m$ 깊이로 함몰전극을 추가로 형성하여 태양전지의 단락 전류 밀도가 개선되었다. 80% 이상의 광투과율을 보인 20nm 두께의 크롬 박막 형성으로 직렬 저항을 감소시켰다. 본 논문은 저가의 고효율, 지상 전력용 태양진지를 위해 결정입계에 대한 연구를 하였다.
최근 CMOS 소자 크기가 축소됨에 따라 소스와 드레인 영역에서의 접촉저항을 줄이기 위하여, 실리사이드 공정이 많이 연구되고 있다. 실리사이드 물질로서 NiSi는 낮은 저항률과 낮은 실리콘 소모, 낮은 공정온도, 등의 장점을 가지고 있다. 그러나, 실리사이드 형성으로 인한 나노소자의 소오스/드레인에서정션(junction) 누설전류의 증가는 큰 문제가 되므로 실리콘과 실리사이드 계면의 특성이 중요하다. 본 연구에서는 니켈을 이용한 실리사이드 형성시 계면 활성제인 에틸 요오드를 이용하여 실험을 진행하였다. 금속 유기 전구체인 MABONi을 사용하여 ALD 방식으로 증착 한 니켈 박막과 니켈 핵 형성시 계면활성제인 에틸요오드의 처리 방법에 따른 Ni-silicide 박막의 특성을 비교, 분석하였다. 먼저 자연산화막을 건식식각으로 제거한 뒤, 첫 번째 샘플에서는 10회의 주기로 초기 니켈을 증착한 뒤, 에틸요오드로 니켈의 표면 위를 처리하고, 다시 200회의 주기로 니켈을 증착하였으며, 두 번째는 첫 번째 방식에서 에틸요오드 주입 시 동시에 수소도 함께 주입하였다. 세 번째는 비교를 위해 에틸요오드 처리를 하지 않고 니켈 박막만을 증착 하였다. 이어서, 각 샘플을 급속 열처리 장비에서 $400^{\circ}C$부터 $900^{\circ}C$까지 각각 30sec간 열처리를 진행후, 반응하지 않은 잔여 니켈을 제거한 후, XRD(x-ray diffraction), AES(auger), 그리고 4-point probe 등을 이용하여 형성된 실리사이드의 특성을 분석하였다. 에틸요오드와 함께 수소를 주입한 경우 계면에서의 산소 불순물과 카본 성분이 효과적으로 제거되어 $400^{\circ}C$에서 $2.9{\Omega}/{\Box}$ 의 낮은 면저항을 가지는 NiSi가 형성되었고 모든 온도구간에서 다른 샘플에 비하여 가장 낮은 면저항 분포를 보였다. 이는 분해 흡착된 요오드에 의한 계면 특성 향상과 카본 성분이 포함된 잔여물들이 수소처리에 의해 효율적으로 제거되어 실리사이드의 특성이 향상되었기 때문이다. 계면활성제를 사용하지 않은 경우에는 $500^{\circ}C$에서 NiSi가 형성되었다. 반면에 에틸요오드로만 표면을 처리한 경우에는 니켈과 실리콘 계면에서의 카본 성분에 의하여 silicidation 이 충분히 일어나지 않았다. 이러한 결과는 향후 45nm 이하의 CMOS 공정상에서 소스와 드레인의 낮은 누설전류를 가지고, 접촉저항을 줄이기 위한 니켈 실리사이드 형성에 큰 도움을 줄 것으로 기대된다.
폐 태양광전지 처리과정에서 은은 실리콘 및 알루미늄을 회수 위해 제거 하거나 처리하지않고 버리고있는 현실이다. 경제적 및 환경 보호 측면에 폐 태양광전지부터 은의 회수 중요하다고 판단함. 선행연구에서 1 mol/L 질산, 반응온도 70도, 반응시간 2h로 폐 태양광전지부터 Ag, Al을 침출 하었다. 이 침출액으로부터 은을 회수하기 위해 추출제 LIX63 및 탈거제 암모니아수 이용하였다. 추출 및 탈거 효율에 영향 미치는 조건: 침출액 pH, 금속이온 농도, 추출제의 농도, A/O ratio(수상 및 유기상 부피비율), 탈거제 농도 및 탁거과정에서 A/O ratio등을 변화시켜 조차하였다. McCabe-Thiele plots로부터 Ag(I)의 추출 및 탈거에 대한 이론 단수를 구하였으며, 향류 다단 모의 추출 시험을 통해 Ag(I)의 추출과 탈거에 대한 효율이 각각 >99.99%, 98.9% 이었다. Ag(I)와 Al(III)의 순도는 각각 99.998% 와 99.99%이었으며, 질산 침출액으로부터 Ag(I)및 Al(III)을 회수하기 위한 공정도를 제안하였다.
본 연구에서는 MicroTec을 이용하여 MOSFET Process 설계를 구현하였다. MOS(Metal Oxide Semiconductor)는 실리콘 기판 등의 반도체 표면에 산화막을 입히고 그 위에 금속을 부착시킨 구조이다. MOSFET의 응용은 VLSI 회로에만 제한되지 않고 전력-전자 회로에서 중요한 역할을 하며 점점 더 적용범위를 증가시켜 마이크로파 응용에 이르기까지 광범위하게 사용하고 있다. Process를 구연하는 방법은 Grid의 크기를 지정하고, 기판의 원소는 B로 지정하고 $1{\times}10^{15}/cm^3$ 만큼 도핑한다. 기판에 구멍을 내어 B와 As의 도핑농도와 에너지값을 설정한다. 마지막으로 어넬링 파라미터 값을 설정한다. 본 연구에서는 원소의 도핑값과 에너지값의 변화에 따른 MOSFET Process의 변화를 알 수 있었다.
최근, 플렉서블 광전자소자 제작 기술의 눈부신 발전으로, 기존의 평면형 이미지 센서가 가지고 있는 여러가지 한계를 극복하기 위해 곡면형 이미지 센서 제작에 대한 다양한 연구가 진행되고 있다. 리소그래피, 물질 성장, 도포, 에칭 등의 대부분의 반도체 공정은 평면 기판에 기반한 공정 방법으로 곡면 구조의 이미지 센서를 제작하기에는 많은 어려움이 있다. 본 연구에서는 곡면형 이미지 센서의 제작을 위해 곡면 구조 위에서의 직접적인 공정 대신 평면 기판에서 단결정 실리콘을 이용해 전사 인쇄가 가능하고 수축이 가능한 초박막 구조의 이미지 센서를 제작한 후 이를 떼어내는 방식을 이용하였다. 이온 주입 및 건식 식각 공정을 통해 평면 SOI (Silicon on Insulator) 기판 위에 단일 광다이오드 배열 형태의 소자를 제작한 후 수 차례의 폴리이미드 층 도포 및 스퍼터링을 통한 금속 배선 공정을 통해 초박막 형태의 광 검출기를 완성한다. 이후 습식 식각 및 폴리디메틸실록산(PDMS) 스탬프를 이용한 전사 인쇄 공정을 통해 기판으로부터 디바이스를 분리하여 변형 가능한 형태의 이미지 센서를 얻을 수 있다. 이러한 박막형 이미지 센서는 유연한 재질로 인해 수축 및 팽창, 구부림과 같은 구조적 변형이 가능하게 되어 겹눈 구조 카메라, 튜너블 카메라 등과 같이 기존 방식의 반도체 공정으로는 구현할 수 없었던 다양한 이미징 시스템 개발에 적용될 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.