• Title/Summary/Keyword: 금속수지복합체

Search Result 6, Processing Time 0.021 seconds

역극성시 금속수지복합체와 세라믹수지복합체의 형상방전가공 특성

  • 우정윤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.52-57
    • /
    • 1996
  • Conductive Ceramic Matrix Composite(CMC) of TIC/Al2O3 and Metal Matrix Composite (MMC) of SiC/Al were experienced by the die sinking Electrical Discharge Machining(EDM) for different current and duty factor according to negative polarity. Inthis experimental study Material Removal Rate(MRR) maximum surface roughness four point bending stress distribution and Scanning Electron Microscopy(SEM) Photographs were analysed. the higher MRR was obtained for CMC than MMC but slowly decreased around duty factor of 0.67 for MMC and better surface morphology was found CMC than MMC. The SEM photographs of discharge traces for CMC showe uniform shape about 100 to 200${\mu}{\textrm}{m}$ in diameter but MMC showed irregular shape.

  • PDF

Development of Epoxy/Boron Nitride Composites for High Heat Dissipation of Metal Copper Clad Laminate (MCCL) (Metal Copper Clad Laminate (MCCL)의 고방열 특성을 위한 Epoxy/BN 복합체 개발)

  • Choi, Ho-Kyoung;Choi, Jae-Hyun;Choi, Bong-Goo;Yoon, Do-Young;Choi, Joong-So
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.64-68
    • /
    • 2020
  • In this study, metal copper clad laminate can be prepared using epoxy composite filled with thermally conductive fillers. In order to improve the thermal conductivity of epoxy composites, it is important factor to form conductive networks through appropriate packing of conductive fillers in epoxy composite matrix and to decrease the amount of thermally resistant junctions involving a epoxy composite matrix layer between adjacent filler units. This is because epoxy has a thermal conductivity of only 0.2-0.3W, so in order to maintain high thermal conductivity, thermally conductive fillers are connected to each other, so that the gap between particles can be reduced to reduce thermal resistance. The purpose of this study is to find way to achieve highly thermally conductive in the epoxy composite matrix filled with Al2O3 and Boron Nitride(BN) filler by filler loading and uniform dispersion. As a results, the use of Al2O3/BN hybrid filler in epoxy matrix was found to be effective in increasing thermal conductivity of epoxy composite matrix due to the enhanced connectivity offered by more continuous thermally conductive pathways and uniform dispersion without interfacial voids in epoxy composite matrix. In addition, surface treatmented s-BN improves the filler dispersion and adhesion between the filler and the epoxy matrix, which can significantly decrease the interfacial thermal resistance and increase the thermal conductivity of epoxy composite matrix.

Mechanical Properties of PVC Composite Containing Iron Dust (제철 분진을 함유한 PVC 복합체 수지의 기계적 성질)

  • Nah, Jae-Woon;Kim, Myung-Yul
    • Elastomers and Composites
    • /
    • v.33 no.5
    • /
    • pp.370-376
    • /
    • 1998
  • Mechanical properties of PVC[poly(vinylchloride)] composites containing the dust from blast and converter (Kwangyang Iron Co.) were investigated as a function of dust content. Tensile strength is increased, when the blast dust is mixed with PVC to the extent of 8.83wt % and impact strength is not significantly changed. From these results, it is suggested that blast dust containing CaO, SiO, MgO, $A1_2O_3$ and metallugical particle is compatible with PVC. Thermogravimetric analysis(TGA) showed that residual weight(%) at temperature $600^{\circ}C$ increased with the amount of blast dust and differential scanning calorimetry(DCS) showed that the thermal stability of PVC composite was increased when the weight ratio of blast dust was 8.83wt % X-ray diffractometry measurement also showed their blends and structures.

  • PDF

The Effects of Insoluble Polymers on Water Stability of Carbon Fiber Reinforced Polymer-MDF Cementitious Composites (불용성 폴리머가 탄소섬유 보강 Polymer-MDF 시멘트 복합재료의 기계적 특성에 미치는 영향)

  • 김태진;박춘근
    • Composites Research
    • /
    • v.12 no.3
    • /
    • pp.84-90
    • /
    • 1999
  • High alumina cement(HAC) and polyvinyl alcohol(PVA) based macro-defect-free(MDF) cement composites were reinforced using short carbon fibers, 3mm in length, 1-4% in weight fraction and insoluble polymers such as polyurethane, epoxy, phenol resin, in order to increase mechanical properties and water stability. The specimens were manufactured by the low heat-press(warmpress) method. In addition, the interface and the cross-linking reaction of cement and polymers was also studied by the SEM and TEM. Flexural strength of HAC/PVA based MDF cementitious composites was proportionally decreased with increasing fiber contents due to the undensified structure around fibers. The flexural strength of insoluble polymer added specimen was decreased with increasing fiber contents, while water stability was dramatically improved. Epoxy resin added specimen showed the highest strength with increasing fiber contents, compared with other specimens. The water stability of fiber content 4% added specimen immersed in water presented about 95%, 87% at 3 and 7 days immersed in water, respectively. The interfacial adhesive strength of fiber-matrix was very much improved due to cross linking reaction of polymer and metal ions of cement. Tensile strength of insoluble polymers added composites as linearly increased with increasing the fiber contents. The epoxy resin added specimen also showed highest tensile strength. The 4% fiber added specimen presented 30~80% higher strength than controlled specimen.

  • PDF

Enhanced Performance of Li Metal Negative Electrode using Protection Film by Carbon Black and Polymeric Binder (카본블랙과 고분자 바인더로 구성된 보호필름을 통한 리튬금속 음극의 성능개선)

  • Noh, Seong Ho;Ryu, Da Young;Jang, Young Seok;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.1
    • /
    • pp.42-49
    • /
    • 2022
  • In this study, the surface protection film based on organic-inorganic composite is manufactured for suppressing lithium dendrite growth, and the film is applied on the surface of Li metal negative electrode for lithium metal batteries (LMBs). The film is consist of the polyvinylidene fluoride (PVDF) polymeric binder which has good mechanical strength and high electrochemical stability, and carbon black (Super-P) which has outstanding electrical conductivity as the inorganic compound. First, in order to confirm the suppression of the internal short circuit by the lithium dendrite, the time required for the short circuit is measured while a constant current is continuously applied. As a result, the internal short circuit is delayed in proportion to the carbon black content of the film, and it is significantly delayed than bare Li metal electrode which does not use protection film. The cycle performance of the thick protection film (8 ㎛), is worse than that of the thin film (4 ㎛). However, as the carbon black content of the film increased, the cycle performance is improved. Thus, the surface protection film based on carbon black/PVDF composite can delay the internal short circuit, and has low overvoltage during the cycle. However, more stable cycle performance needs to be built through further improvements.

Improving the Cycle Performance of Li Metal Secondary Batteries Using Three-Dimensional Porous Ag/VGCF-Coated Separators (3D 다공성 구조의 Ag-VGCF 코팅 분리막을 이용한 리튬금속 이차전지 수명향상)

  • Beom-Hui Lee;Dong-Wan Ham;Ssendagire Kennedy;Jeong-Tae Kim;Sun-Yul Ryou
    • Journal of the Korean Electrochemical Society
    • /
    • v.27 no.3
    • /
    • pp.88-96
    • /
    • 2024
  • Lithium metal has garnered attention as a promising anode active material thanks to its high specific capacity, energy density, and the lowest reduction potential. However, the formation of dendrites, dendritic crystals that arise during the charge and discharge process, has posed safety and lifetime stability challenges. To resolve this, our study has introduced a novel separator design. This separator features a composite coating of vapor-grown carbon fiber, a conductive material in nanofibers, and silver. We have meticulously studied the impact of this innovative separator on the electrochemical properties of the lithium metal anode, unveiling promising results. To confirm the synergistic effect of VGCF and Ag, a separator with no surface treatment and a separator with only VGCF coated on one side were prepared and compared with the Ag-VGCF-separator. In the case of the bare separator, the Li metal surface is covered with dendrites during the initial charge and discharge process. In contrast, both the VGCF-separator and the Ag-VGCF-separator show Li precipitation inside the conductive coating layer coated on the separator surface. Additionally, the Ag-VGCF-separator showed a more uniform precipitate shape than the VGCF-separator. As a result, the Ag-VGCF-separators show improved electrochemical properties compared to the bare separators and the VGCF-separators.