• Title/Summary/Keyword: 근적상

Search Result 529, Processing Time 0.02 seconds

In-line Monitoring of Fluid-Bed Blending Process for Pharmaceutical Powders using Fiber Optics Probe and NIR Spectroscopy (광섬유-탐침과 근적외선(NIR) 분광기를 이용한 약제분말 유동층 혼합공정의 인라인 모니터링 연구)

  • Park, Cho-Rong;Kim, Ah-Young;Lee, Min-Jeong;Lee, Hea-Eun;Seo, Da-Young;Shin, Sang-Mun;Choi, Yong-Sun;Kwon, Byung-Soo;Bang, Kyu-Ho;Kang, Ho-Kyung;Kim, Chong-Kook;Lee, Sang-Kil;Choi, Guang-Jin
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.1
    • /
    • pp.29-36
    • /
    • 2009
  • Since the quality of final products is significantly affected by the homogeneity of powder mixture, the powder blending process has been regarded as one of the critical pharmaceutical unit processes, especially for solid dosage forms. Accordingly, the monitoring to determine a blending process' end-point based on a faster and more accurate in-line/on-line analysis has attracted enormous attentions recently. Among various analytical tools, NIR (near-infrared) spectroscopy has been extensively studied for PAT (process analytical technology) system due to its many advantages. In this study, NIR spectroscopy was employed with an optical fiber probe for the in-line monitoring of fluid-bed blending process. The position of the probe, the ratio of binary powder mixture, the powder size differential and the back-flush period of the shaking bag were examined as principal process parameters. During the blending process of lactose and mannitol powders, NIR spectra were collected, corrected, calibrated and analyzed using MSC and PLS method, respectively. The probe position was optimized. A reasonable end-point was predicted as 1,500 seconds based on 5% RSD value. As a consequence, it was demonstrated that the blending process using a fluid-bed processor has several advantages over other methods, and the application of NIRS with an optical fiber probe as PAT system for a fluid-bed blending process could be high feasible.

Comparative Evaluation of UAV NIR Imagery versusin-situ Point Photo in Surveying Urban Tributary Vegetation (도심소하천 식생조사에서 현장사진과 UAV 근적외선 영상의 비교평가)

  • Lee, Jung-Joo;Hwang, Young-Seok;Park, Seong-Il;Um, Jung-Sup
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.5
    • /
    • pp.475-488
    • /
    • 2018
  • Surveying urban tributary vegetation is based mainly on field sampling at present. The tributary vegetation survey integrating UAV NIR(Unmanned Aerial Vehicle Near Infrared Radiance) imagery and in-situ point photo has received only limited attentions from the field ecologist. The reason for this could be the largely undemonstrated applicability of UAV NIR imagery by the field ecologist as a monitoring tool for urban tributary vegetation. The principal advantage of UAV NIR imagery as a remote sensor is to provide, in a cost-effective manner, information required for a very narrow swath target such as urban tributary (10m width or so), utilizing very low altitude flight, real-time geo-referencing and stereo imaging. An exhaustive and realistic comparison of the two techniques was conducted, based on operational customer requirement of urban tributary vegetation survey: synoptic information, ground detail and quantitative data collection. UAV NIR imagery made it possible to identify area-wide patterns of the major plant communities subject to many different influences (e.g. artificial land use pattern), which cannot be acquired by traditional field sampling. Although field survey has already gained worldwide recognition by plant ecologists as a typical method of urban tributary vegetation monitoring, this approach did not provide a level of information that is either scientifically reliable or economically feasible in terms of urban tributary vegetation (e.g. remedial field works). It is anticipated that this research output could be used as a valuable reference for area-wide information obtained by UAV NIR imagery in urban tributary vegetation survey.

Quantitative Analysis of Contents of Vegetable Oils in Sesame Oils by NIRS (근적외선분광광도법을 이용한 참기름중 이종식용유지 정량법에 관한 연구)

  • Kim, Jae-Kwan;Kim, Jong-Chan;Ko, Hoan-Uck;Lee, Jung-Bock;Kim, Young-Sug;Park, Yong-Bae;Lee, Myung-Jin;Kim, Myung-Gil;Kim, Kyung-A;Park, Eun-Mi
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.4
    • /
    • pp.257-267
    • /
    • 2007
  • The possibility of rapid non-destructive qualitative and quantitative analysis of vegetable oils such as perilla, com, soybean and rapaseed oils in sesame oils was evaluated. A calibration equation calculated by MPLS(Modified Partial Least Squares) regression technique was developed and coefficients of determination for perilla oil, com oil, soybean oil and rapaseed oil contents were 0.9992, 0.9694, 0.9795 and 0.9790 respectively. According to the data obtained from validation study, $R^2$ of contents of perilla, com, soybean, rapaseed oils were 0.997, 0.848, 0.957 and 0.968, and SEP of content of them 0.747, 5.069, 3.063 and 3.000 by MPLS respectively. The results indicate that the NIRS procedure can potentially be used as a non-destructive analysis method for the rapid and simple measurement of sesame oil mixed with other vegetable oils. The detection limits of the NIRS for perilla oil, com oil, soybean oil and rapaseed oil were presumed as 2%, $15{\sim}20%,\;15{\sim}20%$ and 10%, respectively.

A Test of a Far Infrared Camera for Development of New Surface Image Velocimeter for Day and Night Measurement (주야간 겸용 표면영상유속계 개발을 위한 원적외선 카메라의 적용성 검토)

  • Yu, Kwonkyu;Kim, Seojun;Yoo, Byeongnam;Bae, Inhyuk
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.8
    • /
    • pp.659-672
    • /
    • 2015
  • In flow velocity measurement of natural rivers, taking images with proper image quality is the fundamental and the most important step. Since flood peaks generally occur in night time, it is very difficult to capture proper images in that time. The present study aims to test a far infra-red camera as a adequate alternative to resolve the various problems in measuring flood discharges. The far infra-red cameras are able to capture images in night time without help of any extra illuminations. Futhermore they are not affected by fog nor smoke, hence they can be adapted for a fixed-type surface image velocimeters. For comparison, a commercial camcorder and a near infra-red cameras were used together. The test images were taken at a day time and a night time, and the image acquisition work were performed at an artificial flow channel of the Andong River Experiment Station. The analyzed results showed that the far infra-red camera would be a good instrument for surface image velocimeters, since they were able to capture regardless light condition. There are, however, a few minor problems in their accuracy of the analyzed results. About their accuracy a more study would be required.

Stray Light Analysis of a Compact Imaging Spectrometer for a Microsatellite STSAT-3 (과학기술위성3호 부탑재체 소형영상분광기 미광 해석)

  • Lee, Jin Ah;Lee, Jun Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.4
    • /
    • pp.167-171
    • /
    • 2012
  • This paper reports on the stray light analysis results of a compact imaging spectrometer (COMIS) for a microsatellite STSAT-3. COMIS images Earth's surface and atmosphere with ground sampling distances of 27 m at the 18~62 spectral bands (0.4 ~ 1.05 ${\mu}m$) for the nadir looking at an altitude of 700 km. COMIS has an imaging telescope and an imaging spectrometer box into which three electronics PCBs are embedded. The telescope images a $27m{\times}28km$ area of Earth surface onto a slit of dimensions $11.8{\mu}m{\times}12.1mm$. This corresponds to a ground sampling distance of 27 m and a swath width of 28 km for nadir looking posture at an altitude of 700 km. Then the optics relays and disperses the slit image onto the detector thereby producing a monochrome image of the entrance slit formed on each row of detector elements. The spectrum of each point in the row is imaged along a detector column. The optical mounts and housing structures are designed in order to prevent stray light from arriving onto the image and so deteriorating the signal to noise ratio (SNR). The stray light analysis, performed by a non-sequential ray tracing software (LightTools) with three dimensional housing and lens modeling, confirms that the ghost and stray light arriving at the detector plane has the relative intensity of ${\sim}10^{-5}$ and furthermore it locates outside the concerned image size i.e. the field of view of the optics.

Drone-based Vegetation Index Analysis Considering Vegetation Vitality (식생 활력도를 고려한 드론 기반의 식생지수 분석)

  • CHO, Sang-Ho;LEE, Geun-Sang;HWANG, Jee-Wook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.2
    • /
    • pp.21-35
    • /
    • 2020
  • Vegetation information is a very important factor used in various fields such as urban planning, landscaping, water resources, and the environment. Vegetation varies according to canopy density or chlorophyll content, but vegetation vitality is not considered when classifying vegetation areas in previous studies. In this study, in order to satisfy various applied studies, a study was conducted to set a threshold value of vegetation index considering vegetation vitality. First, an eBee fixed-wing drone was equipped with a multi-spectral camera to construct optical and near-infrared orthomosaic images. Then, GIS calculation was performed for each orthomosaic image to calculate the NDVI, GNDVI, SAVI, and MSAVI vegetation index. In addition, the vegetation position of the target site was investigated through VRS survey, and the accuracy of each vegetation index was evaluated using vegetation vitality. As a result, the scenario in which the vegetation vitality point was selected as the vegetation area was higher in the classification accuracy of the vegetation index than the scenario in which the vegetation vitality point was slightly insufficient. In addition, the Kappa coefficient for each vegetation index calculated by overlapping with each site survey point was used to select the best threshold value of vegetation index for classifying vegetation by scenario. Therefore, the evaluation of vegetation index accuracy considering the vegetation vitality suggested in this study is expected to provide useful information for decision-making support in various business fields such as city planning in the future.

A Moving Control of an Automatic Guided Vehicle Based on the Recognition of Double Landmarks (이중 랜드마크 인식 기반 AGV 이동 제어)

  • Jeon, Hye-Gyeong;Hong, Youn-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8C
    • /
    • pp.721-730
    • /
    • 2012
  • In this paper the problem of a moving control of an automatic guided vehicle(AGV) which transports a dead body to a designated cinerator safely in a crematorium, an special indoor environment, will be discussed. Since a method of burying guided lines in the floor is not proper to such an environment, a method of moving control of an AGV based on infrared ray sensors is now proposed. With this approach, the AGV emits infrared ray to the landmarks adheres to the ceiling to find a moving direction and then moves that direction by recognizing them. One of the typical problems for this method is that dead zone and/or overlapping zone may exist when the landmarks are deployed. To resolve this problem, an algorithm of recognizing double landmarks at each time is applied to minimize occurrences of sensing error. In addition, at the turning area to entering the designated cinerator, to fit an AGV with the entrance of the designated cinerator, an algorithm of controlling the velocity of both the inner and outer wheel of it. The functional correctness of our proposed algorithm has been verified by using a prototype vehicle. Our real AGV system has been applied to a crematorium and it moves automatically within an allowable range of location error.

Effects of High Performance Greenhouse Films on Growth and Fruit Quality of Tomato (기능성 피복재가 토마토 생육 및 품질에 미치는 영향)

  • Kwon, Joon-Kook;Cho, Myeomg-Whan;Kang, Nam-Jun;Kang, Yun-Im;Park, Kyoung-Sub;Lee, Jae-Han
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.232-237
    • /
    • 2009
  • This study was performed to investigate the effect of high performance greenhouse films on growth and fruit quality of tomato. For this purpose, polyolefin (PO), fluoric, antidrop, antifog and thermal films were compared to normal film, ethylene vinyl acetate (EVA). In spectral irradiance of the films, UV ($300{\sim}400nm$) transmittance was highest in fluoric film and lowest in PO film. PAR (photosynthetically active radiation, $400{\sim}700nm$) transmittance was higher in fluoric, thermal and PO film, and near infrared ray (NIR, $700{\sim}1,100nm$) transmittance was higher in high performance films, compared to the EVA film. Total light transmittance was higher in order of fluoric, antifog, anti drop, PO, thermal, and EVA film. Day air temperature in greenhouse was highest under fluoric film and lowest under EVA film due to the light transmittance, while night air temperature was highest under PO and anti drop film due to the thickness of film. Tomato fruits grown under the high performance films had 0.2 to $0.5^{\circ}Bx$ higher soluble solids and 15 to 30% higher lycopene content, compared to those grown under the EVA film. The results showed that tomato fruit quality such as soluble solids and lycopene content can be heightened in terms of much irradiation and better light quality of high performance films, compared to the nomal film, EVA film.

Prediction from Linear Regression Equation for Nitrogen Content Measurement in Bentgrasses leaves Using Near Infrared Reflectance Spectroscopy (근적외선 분광분석기를 이용한 잔디 생체잎의 질소 함량 측정을 위한 검량식 개발)

  • Cha, Jung-Hoon;Kim, Kyung-Duck;Park, Dae-Sup
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.1
    • /
    • pp.77-90
    • /
    • 2009
  • Near Infrared Reflectance Spectroscopy(NIRS) is a quick, accurate, and non-destructive method to measure multiple nutrient components in plant leaves. This study was to acquire a liner regression equation by evaluating the nutrient contents of 'CY2' creeping bentgrass rapidly and accurately using NIRS. In particular, nitrogen fertility is a primary element to keep maintaining good quality of turfgrass. Nitrogen, moisture, carbohydrate, and starch were assessed and analyzed from 'CY2' creeping bentgrass clippings. A linear regression equation was obtained from accessing NIRS values from NIR spectrophotometer(NIR system, Model XDS, XM-1100 series, FOSS, Sweden) programmed with WinISI III project manager v1.50e and ISIscan(R) (Infrasoft International) and calibrated with laboratory values via chemical analysis from an authorized institute. The equation was formulated as MPLS(modified partial least squares) analyzing laboratory values and mathematically pre-treated spectra. The accuracy of the acquired equation was confirmed with SEP(standard error of prediction), which indicated as correlation coefficient($r^2$) and prediction error of sample unacquainted, followed by the verification of model equation of real values and these monitoring results. As results of monitoring, $r^2$ of nitrogen, moisture, and carbohydrate in 'CY2' creeping bentgrass was 0.840, 0.904, and 0.944, respectively. SEP was 0.066, 1.868, and 0.601, respectively. After outlier treatment, $r^2$ was 0.892, 0.925, and 0.971, while SEP was 0.052, 1.577, and 0.394, respectively, which totally showed a high correlation. However, $r^2$ of starch was 0.464, which appeared a low correlation. Thereof, the verified equation appearing higher $r^2$ of nitrogen, moisture, and carbohydrate showed its higher accuracy of prediction model, which finally could be put into practical use for turf management system.

Effect of Cationic Initiator Content on Electron-beam Curing of Difunctional Epoxy Resin (양이온 개시제 함량이 2관능성 에폭시 수지의 Electron-beam 경화에 미치는 효과)

  • Soo-Jin Park;Gun-Young Heo;Jae-Rock Lee;Dong Hack Suh
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.3
    • /
    • pp.250-256
    • /
    • 2003
  • In this work, the effect of cationic initiator content on the electron-beam (EB) curing process of diglycidylether of bisphenol-A (DGEBA) resin was studied using near-infrared spectroscopy (NIRS), thermogravimetric analysis (TGA), and critical stress intensity factor $(K_{IC})$. Benzylquinoxalinium hexafluoroantimonate (BQH) were used as an initiator and its content was varied from 0.5 to 3 phr. NIRS measurements showed that the hydroxyl group of EB-cured epoxy resin was increased with increasing the BQH content. Thermal stability and $K_{IC}$ value of EB-cured epoxy resin were increased with increasing the BQH content but were decreased above 2 phr content. These results could be attributed to the decrease of the conversion and degree of crosslinking. In another word, the conversion and degree of crosslinking were restricted by the incomplete network structure from high reactivity at the BQH content above 2 phr, resulting in decreasings of thermal stability and $K_{IC}$.