• Title/Summary/Keyword: 근권미생물

Search Result 185, Processing Time 0.02 seconds

친환경농업 - 근권미생물을 이용한 식물의 건강과 면역활성

  • Park, Gyeong-Seok
    • 농업기술회보
    • /
    • v.51 no.5
    • /
    • pp.17-18
    • /
    • 2014
  • 최근 들어 식물의 뿌리 주변에는 사는 근권미생물과 식물과의 상호작용연구가 새롭게 조명되고 있다. 바실러스, 슈도모나스 등의 근권미생물은 식물의 면역기능을 활성화시켜 작물의 건강을 지키는 것으로 밝혀지고 있으며 이러한 기술을 도입할 경우 농작물의 안전 관리에 중요한 역할을 한다.

  • PDF

A Study on Treatment of Diesel-contaminated Soils Using Fenton Reaction and Rhizosphere Microorganisms (경유 오염토양의 펜톤반응과 근권토양미생물을 이용한 처리에 관한 연구)

  • Lee Eui-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.704-708
    • /
    • 2006
  • This study was designed to investigate the effect of Fenton reaction and consecutive rhizosphere biodegradation on diesel-contaminated soil. According to the result, the TPH removal rate was increased with the concentration of hydrogen peroxide in Fenton's treatment and showed 83.5% for soybean, 81.5% for rice, and 76% for control in rhizosphere biodegradation.

  • PDF

Effects of Transgenic Soybean Cultivation on Soil Microbial Community in the Rhizosphere (형질전환 콩 재배가 근권 토양 미생물상에 미치는 영향)

  • Lee, Ki-Jong;Sohn, Soo-In;Lee, Jang-Yong;Yi, Bu-Young;Oh, Sung-Dug;Kweon, Soon-Jong;Suh, Seok-Choel;Ryu, Tae-Hun;Kim, Kyung-Hwan;Park, Jong-Sug
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.4
    • /
    • pp.466-472
    • /
    • 2011
  • BACKGROUND: Soybean [Glycine max (L.) Merrill] is a legume and an important oil crop worldwide. This study was conducted to evaluate the possible impact of transgenic soybean cultivation on the soil microbial community. METHODS AND RESULTS: Microorganisms were isolated from the rhizosphere soils. Microbial community was identified based on the culture-dependent and molecular biology methods. The total numbers of bacteria, fungi, and actinomycete in the rhizosphere soils cultivated with transgenic and non-transgenic soybeans were similar to each other, and there was no significant difference between transgenic and non-transgenic soybeans. Dominant bacterial phyla in the rhizosphere soils cultivated with transgenic or non-transgenic soybeans were Actinobacteria, Firmicutes, and Proteobacteria. The microbial communities in transgenic and non-transgenic soybean soils were characterized using the denaturing gradient gel electrophoresis (DGGE). The DGGE profiles showed the different patterns, but didn't show significant difference to each other at 0.05 significance level. DNAs were isolated from soils cultivating transgenic or non-transgenic soybeans and analyzed for persistence of transgenes in the soil by using PCR. PCR analysis revealed that there were no amplified ${\gamma}$-tmt and bar gene in soil DNA. CONCLUSION(S): The results of this study suggested that microbial community of soybean field were not significantly affected by cultivation of the transgenic soybeans.

Effects of Protox Herbicide Tolerance Rice Cultivation on Microbial Community in Paddy Soil (Protox 제초제저항성 벼 재배가 토양미생물 군집에 미치는 영향)

  • Oh, Sung-Dug;Ahn, Byung-Ohg;Kim, Min-Kyeong;Sohn, Soo-In;Ryu, Tae-Hun;Cho, Hyun-Suk;Kim, Chang-Gi;Back, Kyoung-Whan;Lee, Kijong
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.2
    • /
    • pp.95-101
    • /
    • 2013
  • BACKGROUND: Rice (Oryza sativa) is the most important staple food of over half the world's population. This study was conducted to evaluate the possible impact of transgenic rice cultivation on the soil microbial community. METHODS AND RESULTS: Microorganisms were isolated from the rhizosphere of GM and non-GM rice cultivation soils. Microbial community was identified based on the culture-dependent and molecular biology methods. The total numbers of bacteria, fungi, and actinomycete in the rhizosphere soils cultivated with GM and non-GM rice were similar to each other, and there was no significant difference between GM and non-GM rice. Dominant bacterial phyla in the rhizosphere soils cultivated with GM and non-GM rice were Actinobacteria, Firmicutes, and Proteobacteria. The microbial communities in GM and non-GM rice cultivated soils were characterized using the denaturing gradient gel electrophoresis (DGGE). The DGGE profiles showed similar patterns, but didn't show significant difference to each other. DNAs were isolated from soils cultivating GM and non-GM rice and analyzed for persistence of inserted gene in the soil by using PCR. The PCR analysis revealed that there were no amplified protox gene in soil DNA. CONCLUSION(S): These data suggest that transgenic rice does not have a significant impact on soil microbial communities, although continued research may be necessary.

Bioremediation of Oil-Contaminated Soil Using Rhizobacteria and Plants (근권세균과 식물을 이용한 유류 오염 토양의 생물복원)

  • Kim Ji-Young;Cho Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.3
    • /
    • pp.185-195
    • /
    • 2006
  • Phytoremediation is an economical and environmentally friendly bioremediation technique using plants which can increase the microbial population in soil. Unlike other pollutants such as heavy metals, poly-chlorinated biphenyl, trichloroethylene, perchloroethylene and so on, petroleum hydrocarbons are relatively easily degradable by soil microbes. For successful phytoremediation of soil contaminated with petroleum hydrocarbons, it is important to select plants with high removal efficiency through microbial degradation. In this study, we clarified the roles of plants and rhizobacteria and identified their species effective on phytore-mediation by reviewing the papers previously reported. Plants and rhizobacteria can degrade and remove the petroleum hydrocarbons directly and indirectly by stimulating each other's degradation activity. The preferred plant species are alfalfa, ryegrass, tall fescue, poplar, corn, etc. The microorganisms with a potential to degrade hydrocarbons mostly belong to Pseudomonas spp., Bacillus spp., and Alcaligenes spp. It has been reported that the elimination efficiency of hydrocarbons by soil microorganisms can be improved when plants were simultaneously applied. For more efficient restoration, it's necessary to understand the plant-rhizobacteria interaction and to select the suitable plant and microorganism species.

Isolation and Antifungar Activity of Bacillus ehimensis YJ-37 as Antagonistic against Vegetables Damping-off Fungi (채소류 모잘록병균에 길항하는 Bacillus ehimensis YJ-37의 선발과 항진균성)

  • 주길재;김진호;강상재
    • Journal of Life Science
    • /
    • v.12 no.2
    • /
    • pp.200-207
    • /
    • 2002
  • This study was carried out to isolate of antagonistic bacterium against Pythium ultimum and Rhizoctonia solani AG-4, causal pathogens of vegetables damping-off. Total of 600 strains were isolated from soil and plait roots. The isolates were screened for antagonism against Pythium ultimum and Rhizoctonia solani AG-4. One strain, named YJ-37, was sellected for detained study among those microoganisms screened. It was identified as Bacillus ehimensis based on morphological and physiological characterisitics according to the Bergey's mannual of systematic bacteriology, Sherlock system of Microbial ID Inc. and 16S rDNA sequences methods. Furthermore Bacillus ehimensis YJ-37 showed antifungal activities against Alternaria altrata, Collectotrichum gloeosporioides, Didymella bryoniae, Fusarium moniliforme, Fusarium oxysporum, F. oxysporum cucumerinum, F. oxysporum niveum, Gloeosporium sp., Glomerella sp., G. cingulata, G. lagenaria, Penicillium digitatum, P. italicum, Phytophthora capsici, Sclerotinia sclerotiorum, and Stemprhylium solani.

Characterization of Heavy Metal Tolerant and Plant Growth-Promoting Rhizobacteria Isolated from Soil Contaminated with Heavy Metal and Diesel (중금속 및 디젤 오염 토양에서 분리한 중금속 내성 식물 생장 촉진 근권세균의 특성)

  • Lee, Soo Yeon;Lee, Yun-Yeong;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.413-424
    • /
    • 2021
  • In order to enhance rhizoremediation performance, which remediates contaminated soils using the interactions between plants and microorganisms in rhizosphere, it is required to develop effective microbial resources that simultaneously degrade contaminants and promote plant growth. In this study, heavy metal-resistant rhizobacteria, which had been cultivated in soils contaminated with heavy metals (copper, cadmium, and lead) and diesel were isolated from rhizospheres of maize and tall fescue. After that, the isolates were qualitatively evaluated for plant growth promoting (PGP) activities, heavy metal tolerance, and diesel degradability. As a result, six strains with heavy metal tolerance, PGP activities, and diesel degradability were isolated. Strains CuM5 and CdM2 were isolated from the rhizosphere soils of maize, and were identified as belonging to the genus Cupriavidus. From the rhizosphere soils of tall fescue, strains CuT6, CdT2, CdT5, and PbT3 were isolated and were identified as Fulvimonas soli, Cupriavidus sp., Novosphingobium sp., and Bacillus sp., respectively. Cupriavidus sp. CuM5 and CdM2 showed a low heavy metal tolerance and diesel degradability, but exhibited an excellent PGP ability. Among the six isolates, Cupriavidus sp. CdT2 and Bacillus sp. PbT3 showed the best diesel degradability. Additionally, Bacillus sp. PbT3 also exhibited excellent heavy metal tolerance and PGP abilities. These results indicate that the isolates can be used as promising microbial resources to promote plant growth and restore soils with contaminated heavy metals and diesel.

Molecular Analysis of Microbial Community in Soils Cultivating Bt Chinese Cabbage (분자생물학적 분석을 통한 Bt 배추의 토양미생물상 영향 비교평가)

  • Sohn, Soo-In;Oh, Young-Ju;Oh, Sung-Dug;Kim, Min-Kyung;Ryu, Tae-Hoon;Lee, Ki-Jong;Suh, Seok-Choel;Baek, Hyeong-Jin;Park, Jong-Sug
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.3
    • /
    • pp.293-299
    • /
    • 2010
  • The aim of this study was to investigate the possible impact of Bt Chinese cabbage on the soil microbial community. Microbial communities were isolated from the rhizosphere of one Bt Chinese cabbage variety and four varieties of conventional ones and were subjected to be analyzed using both culture-dependent and molecular methods. The total counts of bacteria, fungi, and actinomycetes in the rhizosphere of transgenic and conventional Chinese cabbages were observed to have an insignificant difference. Denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA genes revealed that the bacterial community structures were very similar to each other and this genetic stability of microbial communities was maintained throughout the culture periods. Analysis of dominant isolates in the rhizosphere of transgenic and conventional Chinese cabbages showed that the dominant isolates from the soil of transgenic Chinese cabbage belonged to the Bacilli and Alphaproteobacteria, while the dominant isolates from the soil of conventional cabbage belonged to the Holophagae and Planctomycetacia, respectively. These results indicate that the Bt transgenic cabbage has no significant impact on the soil microbial communities.