DOI QR코드

DOI QR Code

Effects of Transgenic Soybean Cultivation on Soil Microbial Community in the Rhizosphere

형질전환 콩 재배가 근권 토양 미생물상에 미치는 영향

  • 이기종 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 손수인 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 이장용 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 이부영 (서울시립대학교 환경원예학과) ;
  • 오성덕 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 권순종 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 서석철 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 류태훈 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 김경환 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 박종석 (농촌진흥청 국립농업과학원 농업생명자원부)
  • Received : 2011.10.25
  • Accepted : 2011.11.07
  • Published : 2011.12.31

Abstract

BACKGROUND: Soybean [Glycine max (L.) Merrill] is a legume and an important oil crop worldwide. This study was conducted to evaluate the possible impact of transgenic soybean cultivation on the soil microbial community. METHODS AND RESULTS: Microorganisms were isolated from the rhizosphere soils. Microbial community was identified based on the culture-dependent and molecular biology methods. The total numbers of bacteria, fungi, and actinomycete in the rhizosphere soils cultivated with transgenic and non-transgenic soybeans were similar to each other, and there was no significant difference between transgenic and non-transgenic soybeans. Dominant bacterial phyla in the rhizosphere soils cultivated with transgenic or non-transgenic soybeans were Actinobacteria, Firmicutes, and Proteobacteria. The microbial communities in transgenic and non-transgenic soybean soils were characterized using the denaturing gradient gel electrophoresis (DGGE). The DGGE profiles showed the different patterns, but didn't show significant difference to each other at 0.05 significance level. DNAs were isolated from soils cultivating transgenic or non-transgenic soybeans and analyzed for persistence of transgenes in the soil by using PCR. PCR analysis revealed that there were no amplified ${\gamma}$-tmt and bar gene in soil DNA. CONCLUSION(S): The results of this study suggested that microbial community of soybean field were not significantly affected by cultivation of the transgenic soybeans.

본 연구는 국내에서 개발된 형질전환 콩 재배 시 토양 미생물 군집에 미치는 영향과 수평적 유전자 이동 여부를 알아보기 위해 수행되었다. 성숙기 토양의 미생물 군집밀도의 경우 형질전환 콩 근권 토양 미생물 군집밀도가 비 형질전환 콩 근권 토양과 유사하여 형질전환 콩 재배가 근권 토양 미생물에 영향을 미치지 않는 것으로 나타났다. 근권 토양의 우점 미생물 분포 양상 분석 결과, Proteobacteria, Firmicutes와 Actinobacteria 순으로 나타났으며 점유율은 다소 차이를 보였으나 우점종은 거의 유사하였다. 근권 토양 DNA에 대한 DGGE 분석 결과, 형질전환 콩과 비 형질전환 콩의 근권 토양 미생물 군집의 변화는 보이지 않았다. 형질전환 콩 재배에 따른 토양의 화학성을 분석한 결과, 형질전환 콩과 비 형질전환 콩의 근권 미생물상의 명확한 차이가 나타날 정도로 토양간 화학성의 차이는 크지 않았다. 형질전환 작물에 도입된 유전자군을 대상으로 식물체와 근권 토양 DNA에 대한 PCR 분석을 수행한 결과 수평적 유전자 이동성은 일어나지 않은 것으로 추정되었다.

Keywords

References

  1. Badosa, E., Moreno, C., Montesinos, E., 2004. Lack of detection of ampicillin resistance gene transfer from Bt176 transgenic corn to culturable bacteria under field conditions, Fems Microbiol. Ecol. 48, 169-178. https://doi.org/10.1016/j.femsec.2004.01.005
  2. Bray, R.H., Kurtz, L.T., 1945. Determination of total, organic, and available forms of phosphorus in soils, Soil Sci . 59, 39-46. https://doi.org/10.1097/00010694-194501000-00006
  3. Brookes, G., Barfoot, P, 2006. Global impact of biotech crops: Socio-economic and environmental effects in the first ten years of commercial use, AgBioForum 9, 139-151.
  4. Conner, A.J., Glare, T.R., Nap, J.P., 2003. The release of genetically modified crops into the environment; Part II. Overview of ecological risk assessment, Plant J. 33, 19-46. https://doi.org/10.1046/j.0960-7412.2002.001607.x
  5. de Vries, J. Wackernagel, W., 2005. Microbial horizontal gene transfer and the DNA release from transgenic crop plants, Plant and Soil 266, 91-104. https://doi.org/10.1007/s11104-005-4783-x
  6. Donegan, K.K., Palm, C.J., Fieland, V.J., Porteous, L.A., Ganio, L.M., Schaller, D.L., Bucao, L.Q., Seidler, R.J., 1995. Changes in levels, species and DNA fingerprints of soil-microorganisms associated with cotton expressing the Bacillus thuringiensis Var. Kurstaki endotoxin, Appl. Soil Ecol. 2, 111-124. https://doi.org/10.1016/0929-1393(94)00043-7
  7. Ellstrand, N.C., 1992. Gene flow by pollen: Implications for plant conservation genetics, Oikos 63, 77-86. https://doi.org/10.2307/3545517
  8. Filion, M., 2008. Do transgenic plants affect rhizobacteria populations?, Microb. Biotechnol. 1, 463-475. https://doi.org/10.1111/j.1751-7915.2008.00047.x
  9. Germida, J.J., Dunfield, K.E., 2004. Impact of genetically modified crops on soil- and plant-associated microbial communities, J. Environ. Qual. 33, 806-815. https://doi.org/10.2134/jeq2004.0806
  10. James, C., 2010. Global Status of Commercialized Biotech/GM Crops: 2010, ISAAA Brief No. 42. ISAAA: Ithaca, NY.
  11. Jonas, D.A., Elmadfa, I., Engel, K.H., Heller, K.J., Kozianowski, G., Konig, A., Muller, D., Narbonne, J.F., Wackernagel, W., Kleiner, J., 2001. Safety considerations of DNA in food, Annu. Nut. Metab. 45, 235-254. https://doi.org/10.1159/000046734
  12. Jung, B.G., Choi, J.W., Yoon, J.H., Kim, Y.H., Yun, E.S., 2001. Monitoring on chemical properties of bench marked upland soils in Korea, Korean J. Soil Sci. Fert. 34, 326-332.
  13. Kim, M.C., Ahn, J.H., Shin, H.C., Kim, T., Ryu, T.H., Kim, D.H., Song, H.G., Lee, G.H., Kai, J.O., 2008. Molecular analysis of bacterial community structures in paddy soils for environmental risk assessment with two varieties of genetically modified rice, Iksan 483 and Milyang 204, J Microbiol. Biotech. 18, 207-218.
  14. Konig, A., Cockburn, A., Crevel, R.W.R., Debruyne, E., Grafstroem, R., Hammerling, U., Kimber, I., Knudsen, I., Kuiper, H.A., Peijnenburg, A.A.C., Penninks, A.H., Poulsen, M., Schauzu, M., Wal, J.M., 2004. Assessment of the safety of foods derived from genetically modified (GM) crops. Food Chem. Toxicol. 42, 1047-1088. https://doi.org/10.1016/j.fct.2004.02.019
  15. Lee, B.K., Kim, C.G., Park, J.Y., Park, K.W., Yi, H.B., Harn, C.H., Kim, H.M., 2007. Assessment of the persistence of DNA in decomposing leaves of CMVP0-CP transgenic chili pepper in the field conditions, Korean J. Environ. Agric. 26, 319-324. https://doi.org/10.5338/KJEA.2007.26.4.319
  16. Lee, K., Yi, B.-Y., Kim, K.-H., Kim, J.-B., Suh, S.-C., Woo, H.-J., Shin, K.-S., and Kweon, S.-J., 2011. Development of efficient transformation protocol for soybean (Glycine max L.) and characterization of transgene expression after Agrobacterium-mediated gene transfer, J. Korean Soc. Appl. Biol. Chem. 54, 37-45. https://doi.org/10.3839/jksabc.2011.005
  17. Lorenz, M.G., Blum, S.A.E., Wackernagel, W., 1997. Mechanism of retarded DNA degradation and prokaryotic origin of DNases in nonsterile soils, Syst. Appl. Microbiol. 20, 513-521. https://doi.org/10.1016/S0723-2020(97)80021-5
  18. Miethling, R., Wieland, G., Backhaus, H., Tebbe, C.C., 2000. Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33, Microbial. Ecol. 40, 43-56. https://doi.org/10.1007/s002480000021
  19. NIAST, 2000. Methods of analysis of soil and plant, National Institute of Agricultural Science and Technology, Suwon, Korea.
  20. Nielsen, K.M., Townsend, J.P., 2004. Monitoring and modeling horizontal gene transfer, Nat. Biotechnol. 22, 1110-1114. https://doi.org/10.1038/nbt1006
  21. Ochman, H, Lawrence, J.G., Grooisman, E.A., 2000. Lateral gene transfer and the nature of bacterial innovation, Nature . 405, 299-304. https://doi.org/10.1038/35012500
  22. Owen, M.D.K., 2000. Current use of transgenic herbicide-resistant soybean and corn in the USA., Crop Prot. 19, 765-771. https://doi.org/10.1016/S0261-2194(00)00102-2
  23. Saxena, D. Stotzky, G., 2001. Bacillus thuringiensis (Bt) toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, bacteria, and fungi in soil, Soil Biol. Biochem. 33, 1225-1230. https://doi.org/10.1016/S0038-0717(01)00027-X
  24. Sharma, S., Aneja, M.K., Mayer, J., Munch, J.C., Schloter, M., 2005. Characterization of bacterial community structure in rhizosphere soil of grain legumes, Microbial. Ecol. 49, 407-415. https://doi.org/10.1007/s00248-004-0041-7
  25. Smalla, K., Gebhard, F., 1999. Monitoring field releases of genetically modified sugar beets for persistence of transgenic plant DNA and horizontal gene transfer, Fems Microbiol. Ecol. 28, 261-272. https://doi.org/10.1111/j.1574-6941.1999.tb00581.x
  26. Sohn, S.I., Kwon, J.S., Woen, H.Y., Noh, H.J., Kim, K.H., Baek, H.J., Kim, Y.H., 2009. Assessment of microbial community in the rhizoplane and rhizosphere soil of herbicide-resistant transgenic perilla. Korean J. Intl. Agri. 21, 120-124.
  27. Sohn, S.I., Oh, Y.J., Oh, S.D., Kim, M.K., Ryu, T.H., Lee, K.J., Suh, S.C., Baek, H.J., Park, J.S., 2010. Molecular analysis of microbial community in soils cultivating Bt Chinese cabbage, Korean J. Environ. Agric. 29, 293-299. https://doi.org/10.5338/KJEA.2010.29.3.293
  28. Walkley, A., Black, I.A., 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method, Soil Sci. 37, 29-38. https://doi.org/10.1097/00010694-193401000-00003
  29. Widmer F., Seidler, R.J., Donegan, K.K., Reed, G.L., 1997. Quantification of transgenic plant marker gene persistence in the field, Mol. Ecol. 6, 1-7. https://doi.org/10.1046/j.1365-294X.1997.00145.x

Cited by

  1. The GMO Industry: A Neglected Earthly Frontier 2018, https://doi.org/10.1080/19320248.2016.1227755