DOI QR코드

DOI QR Code

Effects of Protox Herbicide Tolerance Rice Cultivation on Microbial Community in Paddy Soil

Protox 제초제저항성 벼 재배가 토양미생물 군집에 미치는 영향

  • 오성덕 (농촌진흥청 국립농업과학원) ;
  • 안병옥 (농촌진흥청 국립농업과학원) ;
  • 김민경 (농촌진흥청 국립농업과학원) ;
  • 손수인 (농촌진흥청 국립농업과학원) ;
  • 류태훈 (농촌진흥청 국립농업과학원) ;
  • 조현석 (농촌진흥청 국립농업과학원) ;
  • 김창기 (한국생명공학연구원 바이오평가센터) ;
  • 백경환 (전남대학교 응용생물공학부 분자생명공학전공) ;
  • 이기종 (농촌진흥청 국립농업과학원)
  • Received : 2013.01.09
  • Accepted : 2013.03.08
  • Published : 2013.06.30

Abstract

BACKGROUND: Rice (Oryza sativa) is the most important staple food of over half the world's population. This study was conducted to evaluate the possible impact of transgenic rice cultivation on the soil microbial community. METHODS AND RESULTS: Microorganisms were isolated from the rhizosphere of GM and non-GM rice cultivation soils. Microbial community was identified based on the culture-dependent and molecular biology methods. The total numbers of bacteria, fungi, and actinomycete in the rhizosphere soils cultivated with GM and non-GM rice were similar to each other, and there was no significant difference between GM and non-GM rice. Dominant bacterial phyla in the rhizosphere soils cultivated with GM and non-GM rice were Actinobacteria, Firmicutes, and Proteobacteria. The microbial communities in GM and non-GM rice cultivated soils were characterized using the denaturing gradient gel electrophoresis (DGGE). The DGGE profiles showed similar patterns, but didn't show significant difference to each other. DNAs were isolated from soils cultivating GM and non-GM rice and analyzed for persistence of inserted gene in the soil by using PCR. The PCR analysis revealed that there were no amplified protox gene in soil DNA. CONCLUSION(S): These data suggest that transgenic rice does not have a significant impact on soil microbial communities, although continued research may be necessary.

본 연구는 Protox 제초제내성 벼 재배가 토양 미생물에 미치는 영향과 수평적 유전자 이동성을 알아보기 위해 수행되었다. 생육단계별 토양 미생물 군집밀도의 경우 제초제내성 벼를 재배한 근권 토양 미생물 군집밀도가 비 형질전환 벼의 근권 토양과 유사하여 제초제저항성 벼 재배가 근권 토양 미생물에 미치는 영향은 비슷할 것으로 추정되었다. 근권 토양의 우점 미생물 분포 양상을 분석한 결과, Proteobacteria, Firmicutes와 Actinobacteria 순으로 나타났으며 우점종과 점유율은 거의 유사하였다. 근권 토양 DNA에 대한 DGGE 분석 결과, 제초제내성 벼와 비 형질전환 벼의 근권 토양 미생물 군집의 profile 변화는 나타나지 않았다. 제초제내성 벼 재배에 따른 토양 화학성을 분석한 결과, 비 형질전환 벼의 근권 토양간 화학성은 차이가 없는 것으로 나타났다. 제초제 내성 벼에 도입된 유전자군을 대상으로 근권 토양 DNA에 대한 PCR 분석 결과, 도입 유전자의 잔존성이 길지 않아 수평적 유전자 이동성은 희박할 것으로 추정되었다.

Keywords

References

  1. Bray, R.H., Kurtz, L.T., 1945. Determination of total, organic, and available forms of phosphorus in soils, Soil Sci. 59, 39-46. https://doi.org/10.1097/00010694-194501000-00006
  2. Brookes, G., Barfoot, P, 2006. Global impact of biotech crops: Socio-economic and environmental effects in the first ten years of commercial use, AgBioForum 9, 139-151.
  3. Conner, A.J., Glare, T.R., Nap, J.P., 2003. The release of genetically modified crops into the environment; Part II. Overview of ecological risk assessment, Plant J. 33, 19-46. https://doi.org/10.1046/j.0960-7412.2002.001607.x
  4. de Vries, J. Wackernagel, W., 2005. Microbial horizontal gene transfer and the DNA release from transgenic crop plants, Plant and Soil 266, 91-104. https://doi.org/10.1007/s11104-005-4783-x
  5. Ellstrand, N.C., 1992. Gene flow by pollen: Implications for plant conservation genetics, Oikos 63, 77-86. https://doi.org/10.2307/3545517
  6. Filion, M., 2008. Do transgenic plants affect rhizobacteria populations?, Microb. Biotechnol. 1, 463-475. https://doi.org/10.1111/j.1751-7915.2008.00047.x
  7. Germida, J.J., Dunfield, K.E., 2004. Impact of genetically modified crops on soil-and plant-associated microbial communities, J. Environ. Qual. 33, 806-815. https://doi.org/10.2134/jeq2004.0806
  8. James, C., 2011. Global Status of Commercialized Biotech/GM Crops: 2011, ISAAA Brief No. 43. ISAAA: Ithaca, NY.
  9. Jonas, D.A., Elmadfa, I., Engel, K.H., Heller, K.J., Kozianowski, G., Konig, A., Muller, D., Narbonne, J.F., Wackernagel, W., Kleiner, J., 2001. Safety considerations of DNA in food, Annu. Nut. Metab. 45, 235-254. https://doi.org/10.1159/000046734
  10. Jung, S., Lee, Y., YANG, K., Lee, S.B., Jang, S.M., Ha, S.B., BACK, K., 2004. Dual targeting of Myxococcus xanthus protoporphyrinogen oxidase into chloroplasts and mitochondria and high level oxyfluorfen resistance, Plant Cell Environ. 27, 1436-1446. https://doi.org/10.1111/j.1365-3040.2004.01247.x
  11. Jung, B.G., Choi, J.W., Yoon, J.H., Kim, Y.H., Yun, E.S., 2001. Monitoring on chemical properties of bench marked upland soils in Korea, Korean J. Soil Sci. Fert. 34, 326-332.
  12. Kardol, P., Bezemer, T.M., Van Der Putten, W.H., 2006. Temporal variation in plant-soil feedback controls succession. Ecol. Lett. 9, 1080-1088. https://doi.org/10.1111/j.1461-0248.2006.00953.x
  13. Kim, M.C., Ahn, J.H., Shin, H.C., Kim, T., Ryu, T.H., Kim, D.H., Song, H.G., Lee, G.H., Kai, J.O., 2008. Molecular analysis of bacterial community structures in paddy soils for environmental risk assessment with two varieties of genetically modified rice, Iksan 483 and Milyang 204, J Microbiol. Biotech. 18, 207-218.
  14. Kim S.E., Moon, J.S., Kim, J.K., Choi, W.S., Lee, S.H., Kim, S.U., 2010. Investigation of possible horizontal gene transfer from transgenic rice to soil microorganisms in paddy rice field, J. Microbiol. Biotechnol. 20, 187-192. https://doi.org/10.4014/jmb.0905.05050
  15. Lee, B.K., Kim, C.G., Park, J.Y., Park, K.W., Yi, H.B., Harn, C.H., Kim, H.M., 2007. Assessment of the persistence of DNA in decomposing leaves of CMVP0-CP transgenic chili pepper in the field conditions, Korean J. Environ. Agric. 26, 319-324. https://doi.org/10.5338/KJEA.2007.26.4.319
  16. Lee, K., Yi, B.-Y., Kim, K.-H., Kim, J.-B., Suh, S.-C., Woo, H.-J., Shin, K.-S., and Kweon, S.-J., 2011. Development of efficient transformation protocol for soybean (Glycine max L.) and characterization of transgene expression after Agrobacterium-mediated gene transfer, J. Korean Soc. Appl. Biol. Chem. 54, 37-45. https://doi.org/10.3839/jksabc.2011.005
  17. Lorenz, M.G., Blum, S.A.E., Wackernagel, W., 1997. Mechanism of retarded DNA degradation and prokaryotic origin of DNases in nonsterile soils, Syst. Appl. Microbiol. 20, 513-521. https://doi.org/10.1016/S0723-2020(97)80021-5
  18. Miethling, R., Wieland, G., Backhaus, H., Tebbe, C.C., 2000. Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33, Microbial. Ecol. 40, 43-56. https://doi.org/10.1007/s002480000021
  19. NIAST, 2000. Methods of analysis of soil and plant, National Institute of Agricultural Science and Technology, Suwon, Korea.
  20. Ochman, H, Lawrence, J.G., Grooisman, E.A., 2000. Lateral gene transfer and the nature of bacterial innovation, Nature. 405, 299-304. https://doi.org/10.1038/35012500
  21. Owen, M.D.K., 2000. Current use of transgenic herbicide-resistant soybean and corn in the USA., Crop Prot. 19, 765-771. https://doi.org/10.1016/S0261-2194(00)00102-2
  22. Sharma, S., Aneja, M.K., Mayer, J., Munch, J.C., Schloter, M., 2005. Characterization of bacterial community structure in rhizosphere soil of grain legumes, Microbial. Ecol. 49, 407-415. https://doi.org/10.1007/s00248-004-0041-7
  23. Smalla, K., Gebhard, F., 1999. Monitoring field releases of genetically modified sugar beets for persistence of transgenic plant DNA and horizontal gene transfer, Fems Microbiol. Ecol. 28, 261-272. https://doi.org/10.1111/j.1574-6941.1999.tb00581.x
  24. Sohn, S.I., Oh, Y.J., Oh, S.D., Kim, M.K., Ryu, T.H., Lee, K.J., Suh, S.C., Baek, H.J., Park, J.S., 2010. Molecular analysis of microbial community in soils cultivating Bt Chinese cabbage, Korean J. Environ. Agric. 29, 293-299. https://doi.org/10.5338/KJEA.2010.29.3.293
  25. Walkley, A., Black, I.A., 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method, Soil Sci. 37, 29-38. https://doi.org/10.1097/00010694-193401000-00003
  26. Widmer F., Seidler, R.J., Donegan, K.K., Reed, G.L., 1997. Quantification of transgenic plant marker gene persistence in the field, Mol. Ecol. 6, 1-7. https://doi.org/10.1046/j.1365-294X.1997.00145.x

Cited by

  1. The GMO Industry: A Neglected Earthly Frontier 2018, https://doi.org/10.1080/19320248.2016.1227755