• Title/Summary/Keyword: 극한 지지력

Search Result 209, Processing Time 0.133 seconds

A Numerical Analysis Study for Estimation of Ultimate Bearing Capacity and An Analysis of the High Capacity Bi-directional Pile Load Tests of the Large-diameter Drilled Shafts (대구경 현장타설말뚝의 대용량 양방향 말뚝재하시험 분석 및 극한지지력 추정을 위한 수치해석 연구)

  • Nam, Moonsuk;Kim, Sangil;Hong, Seokwoo;Hwang, Seongchun;Choi, Yongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.10
    • /
    • pp.63-72
    • /
    • 2011
  • The high capacity bi-directional pile load test is an optimum pile load test method for high-rised buildings. Especially, a high pressure and double-acting bi-directional pile load testing, a special type of the high capacity bi-directional pile load test, is the most practical way to overcome limitations of loading capacities and constraints of field conditions, which was judged to be a very useful test method for requiring high loading capacities. Total of 2 high capacity bi-directional pile load tests(P-1 and P-2) were conducted in high-rised building sites in Korea. Based on the field load test results, the sufficiency ratio of loading capacities to design loads for P-1 and P-2 were 3.3 and 2.1, respectively. For P-2, the load test could not verify the design load if 1-directional loads applied slightly smaller than the actual applied load. Also, high capacity bi-directional pile load tests were difficult to determine an ultimate state of ground or piles, although the loads were applied until their maximum loads. Hence, finite element analyses were conducted to determine their ultimate states by calibrating and extrapolate with test results.

A Study on the Behaviour of Jacket Anchor (자켓앵커 거동특성에 관한 연구)

  • Kim, Dong-Hee;Kim, In-Chul;Kong, Hyun-Seok;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.89-97
    • /
    • 2008
  • A series of field tests were performed to investigate the behavior of jacket anchor and to evaluate the ultimate bond stress of jacket anchor. From twelve sets of field tests on the jacket anchor and general type ground anchor, it was observed that the pullout resistance of jacket anchor is significantly larger than that of the ground anchor and that the plastic deformation of jacket anchor is significantly smaller than that of general ground anchor at the same loading cycle. Especially in gravel layers, the jacket anchor provides more than 250% increase in ultimate resistance and more than 600% reduction in plastic deformation, compared with the general ground anchor. Finally, the relationship between the injection pressure and overburden pressure is proposed to determine the optimum injection pressure, based on additional field test results.

Behavior of Small-Scale Pile Group Under Vertical Loading (연직하중을 받는 소규모 무리말뚝의 거동)

  • 이영남;이승현;박영호
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.37-46
    • /
    • 2001
  • Pile load tests were carried out to investigate the contribution of the pile cap to the carrying capacity of a pile group and load transfer characteristics of piles in the group. A group of 24 piles$(4 \times6 array)$ of 92.5mm diameter steel pipe were installed to the depth of 3m fron the ground surface, the top of weathered rock. A maximum load of 320ton was applied to the pile cap, $1.5\times2.3m$, in contact with the ground surface. At the maximum load of 320ton, the pile cap has carried 22% of the total load. Average ultimate capacity of pile in the pile group was estimated to be 16.4ton, substantially higher than that of single pile, installed at the corner and tested before pile cap construction. For the same magnitude of settlement, the pile in the center carried less load than the pile at the perimeter due to strain superposition effect. Piles in the group showed almost constant contribution(approx. 60%) of side friction to the total capacity for all of the loading stages, while that of single pile decreased from 82% to 65%.

  • PDF

Characteristics on Pullout Behavior of Belled Tension Pile in Sandy Soils (사질토지반의 선단확장형말뚝의 인발거동 특성)

  • Cho, Seok-Ho;Kim, Hak-Moon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3599-3609
    • /
    • 2010
  • Recently, the construction of coastal structures and high-rise structures against the horizontal and uplift forces increases with the developing the coastal developments. Especially the application of belled tension pile as foundation type to effectively resist uplift force is increasing in coastal structures. However, research on pullout resistance of belled tension pile has been limited and not yet been fully performed. Therefore, the pullout load tests of belled tension piles in four overseas sites were performed, then the bearing capacity, characteristics on load-displacement of piles and load distribution considering skin friction were investigated in this paper. In addition, the limit pullout bearing capacity calculated by the three-dimensional finite element analysis and theoretical methods were compared with values of in-situ test.

A Case Study on Application of O-cell Test in Oversea (양방향재하시험의 국외 적용 사례)

  • Lee, Won-Je;Molnit, Thomas
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.593-602
    • /
    • 2006
  • 대구경 현장타설말뚝에 대한 시험하중의 증가와 함께 적용이 활성화되고 있는 오스터버그 셀(Osterberg cell)방식이 적용된 국외의 4 개소 시험결과에 대하여 소개하였다. 사례연구의 대상이 된 4 개소 시험말뚝은 일반적인 시험보다는 결과상의 특징이 있어 현재 및 향후 동일한 시험방법이 적용될 경우 고려될 수 있는 내용을 중심으로 기술하였다. 이들 말뚝시험에서는 가장 전형적으로 지지력의 균형이 이루어져 말뚝의 극한현상이 발생되지 않아 설계하중을 충분히 확인한 경우뿐 아니라 선단지지력이 부족하여 선단 그라우팅 후 재시험을 한 경우, O-cell을 말뚝의 선단에 가장 근접하여 설치 한 후 시험한 경우, 그리고 다단면(multi-level test)시험이 수행되었던 예 등을 살펴보았다.

  • PDF

Study(IV) on the Development of Charts and Formulae Predicting Allowable Axial Bearing Capacity for Prebored PHC Pile Socketed into Weathered Rock through Sandy Soil Layer - Field Verification of Long-term Allowable Compressive Load of PHC Piles by Analyzing Pile Load Test Results - (사질토층을 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연구(IV) - 압축정재하시험 및 양방향재하시험 자료 분석을 통한 매입 PHC말뚝의 장기허용압축하중의 실증 성능 검증 -)

  • Lee, Wonje;Kim, Chae Min;Yun, Do Kyun;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.9
    • /
    • pp.29-36
    • /
    • 2019
  • Axial compressive failure loads ($P_n$) of diameter 500 mm and diameter 600 mm A type PHC pile were calculated as 7.7 MN and 10.6 MN, respectively. In the static pile load tests, the maximum axial compressive loads of the above 2 kinds of A type pile were measured as 6.9 MN and 8.8 MN respectively, therefore these measured maximum loads were at the level of 90% and 83% of $P_n$ respectively. Long-term allowable axial compressive loads ($P_a$) of the above 2 kinds of A type pile were 1.7 MN and 2.3 MN respectively. From the bi-directional pile load test data on the prebored PHC piles, it was confirmed that the allowable axial compressive bearing resistance was estimated as 131% of the long-term allowable compressive load of the PHC pile and showed higher than the allowable bearing capacity calculated by the current design method. Therefore, it has been verified that the PHC pile can be used up to the maximum long-term allowable compressive load, and it is suggested that the ultimate pile capacity formula used in the current design for prebored PHC piles should be improved to accommodate the actual capacity.

A Study of Point Selection for Loading Cells in Bi-directional Pile Load Test (양방향재하시험에서 재하장치 위치 선정에 관한 연구)

  • Yoon, Minseung;Kim, Junwoo;Kim, Myunghak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.10
    • /
    • pp.11-16
    • /
    • 2013
  • Success or failure of the bi-directional pile load test for drilled shaft depends on point selection for loading cells, that is balanced location both uplift force and downward force. Methods to evaluate the ultimate unit side resistance in rockmass layer in both domestic and foreign are based on the uniaxial compression strength of rock core, which can hardly be obtained in domestic rockmass layers which are weathered rockmass layer and soft rockmass layer with very low RQD. Therefore, this study suggested the relation charts between the revised SPT N values and developed unit side resistance of each different layers, which were obtained from bi-directional pile load tests in various domestic sites. To evaluate the appropriateness of the relation charts, the developed unit side resistances from the relation charts were used to select the loading cell position and compared with the measured unit side resistances from field pile load test. Results showed that the developed side resistance from relation charts and the measured side resistance of weathered soil layer and weathered rock layer were very close. Average developed side resistance($1,325kN/m^2$), which are average of upper soft rock layer of loading device($1,151kN/m^2$) and lower($1,500kN/m^2$), was similar with the estimated value ($1,250kN/m^2$).

Bearing Capacity of Strip Footing on Geogrid-Reinforced Soft Ground (지오그리드로 보강된 연약지반 위에 위치한 연속기초의 극한 지지력)

  • 유충식;신승우
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.169-174
    • /
    • 1994
  • This paper presents the results of a parametric study on the bearing capacity behavior of a footing located above geogrid-reinforced ground using the finite element method of analysis. A wide range of boundary conditions were analyzed, with varing geogrid design parameters such as depth of geogrid layer, length and siffness of geogrid, and number of geogrid layer, were analyzed. Based on the results of analysis, the optimum geogrid design parameters were determined, which maximize the reinforcing effect of geogrid reinforcement for a given conidition. Furthermore, the mechanistic behavior of a geogrid-reinforced ground subjected to a footing load was discussed using the results of analysis such as stress distribution, propagation of plastic yielding, displacement vector among others.

  • PDF

Failure Analysis Model for Tensioned FRP Dowels (인장을 받는 FRP 다우일의 파괴 해석 모델)

  • 박상렬
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.2
    • /
    • pp.137-146
    • /
    • 1998
  • 본 연구에서는 콘크리트 속에서 인장과 전단을 받는 FRP 다우얼의 거동과 파괴를 예측할 수 잇는 수리적인 파괴 해석 모델을 개발하였다. 다우얼 파괴해석 모델은 다우얼 작용과 파괴기준에 대한 두 개의 하위 모델로 구성되어 있는데 이들을 수정, 결합하여 만들어졌다. 다우얼 작용에 대한 모델로는 BEF 모델을 기초로 하여 두가지의 지수를 새로이 정의, 사용하였는데 하나는 콘크리트지지 강성을 변화시키기 위한 변위 정도 지수이고 다른 하나는 긴장된 케이블의 반력을 고려하기 위한 인장 지수이다. 인장과 전단이 작용하는 FRP다우얼의파괴 모델로는 Tsai-Hill 파괴기준이 사용되었고 이 기준을 적용하기 위하여 파괴 계수를 정의하였다. 개발된 파괴 해석 모델은 긴장된 FRP다우얼의 극한 전단력과 극한 변위를 예측하는데 사용하였고, 해석결과는 여러 인장응력을 가진 FRP 다우얼의 시험결과와 비교하였다.

Change of Statical Behavior and Ultimate Capacity of Steel Cable-stayed Bridges after Cable Failure (케이블 단선 후 강사장교의 구조 및 극한 거동 변화)

  • Kim, Seung-Jun;Choi, Jun-Ho;Won, Deok-Hee;Han, Taek-Hee;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.747-761
    • /
    • 2011
  • This paper presents an investigation on the change in the statical behavior and the ultimate capacity of steel cable-stayed bridges after cable failure. Cable failure can occur due to fire, direct vehicle clash accidents, cable or anchorage fatigue, and so on. Moreover, the cable may be temporarily disconnected during cable replacement work. When cable failure occurs, the load, that was supported by the broken cable is first transferred to another cable. Then the structural state changes due to the interaction between the girder, mast, and cables. Moreover, it can be predicted that the ultimate capacity will decrease after cable failure, because of the loss of the support system. In this study, the analysis method is suggested to find the new equilibrium state after cable failure based on the theory of nonlinear finite element analysis. Moreover, the ultimate analysis method is also suggested to analyze the ultimate behavior of live loads after cable failure. For a more rational analysis, a three-step analysis procedure is suggested and used, which consisted of initial shape analysis, cable failure analysis, and live load analysis. Using this analysis method, an analytical study was performed to investigate the changes in the structural state and ultimate behavior of steel cable-stayed bridges.